ﻻ يوجد ملخص باللغة العربية
Mixture models are regularly used in density estimation applications, but the problem of estimating the mixing distribution remains a challenge. Nonparametric maximum likelihood produce estimates of the mixing distribution that are discrete, and these may be hard to interpret when the true mixing distribution is believed to have a smooth density. In this paper, we investigate an algorithm that produces a sequence of smooth estimates that has been conjectured to converge to the nonparametric maximum likelihood estimator. Here we give a rigorous proof of this conjecture, and propose a new data-driven stopping rule that produces smooth near-maximum likelihood estimates of the mixing density, and simulations demonstrate the quality empirical performance of this estimator.
The mixed fractional Vasicek model, which is an extended model of the traditional Vasicek model, has been widely used in modelling volatility, interest rate and exchange rate. Obviously, if some phenomenon are modeled by the mixed fractional Vasicek
We derive Laplace-approximated maximum likelihood estimators (GLAMLEs) of parameters in our Graph Generalized Linear Latent Variable Models. Then, we study the statistical properties of GLAMLEs when the number of nodes $n_V$ and the observed times of
Maximum likelihood estimation of mixture proportions has a long history, and continues to play an important role in modern statistics, including in development of nonparametric empirical Bayes methods. Maximum likelihood of mixture proportions has tr
In this note we provide explicit expressions and expansions for a special function which appears in nonparametric estimation of log-densities. This function returns the integral of a log-linear function on a simplex of arbitrary dimension. In particu
The likelihood-informed subspace (LIS) method offers a viable route to reducing the dimensionality of high-dimensional probability distributions arisen in Bayesian inference. LIS identifies an intrinsic low-dimensional linear subspace where the targe