ﻻ يوجد ملخص باللغة العربية
Markov chain Monte Carlo(MCMC) is a popular approach to sample from high dimensional distributions, and the asymptotic variance is a commonly used criterion to evaluate the performance. While most popular MCMC algorithms are reversible, there is a growing literature on the development and analyses of nonreversible MCMC. Chen and Hwang(2013) showed that a reversible MCMC can be improved by adding an antisymmetric perturbation. They also raised a conjecture that it can not be improved if there is no cycle in the corresponding graph. In this paper, we present a rigorous proof of this conjecture. The proof is based on the fact that the transition matrix with an acyclic structure will produce minimum commute time between vertices.
It is commonly admitted that non-reversible Markov chain Monte Carlo (MCMC) algorithms usually yield more accurate MCMC estimators than their reversible counterparts. In this note, we show that in addition to their variance reduction effect, some non
We present a convex-concave reformulation of the reversible Markov chain estimation problem and outline an efficient numerical scheme for the solution of the resulting problem based on a primal-dual interior point method for monotone variational ineq
Motivated by the notion of resistance distance on graph, we define a new resistance distance between two states on a given finite ergodic Markov chain based on its fundamental matrix. We prove a few equivalent formulations and discuss its relation wi
In this paper, we develop an in-depth analysis of non-reversible Markov chains on denumerable state space from a similarity orbit perspective. In particular, we study the class of Markov chains whose transition kernel is in the similarity orbit of a
We study a large class of reversible Markov chains with discrete state space and transition matrix $P_N$. We define the notion of a set of {it metastable points} as a subset of the state space $G_N$ such that (i) this set is reached from any point $x