ﻻ يوجد ملخص باللغة العربية
CaFe$_{2}$O$_{4}$ is an anisotropic $S={5over 2}$ antiferromagnet with two competing $A$ ($uparrow uparrow downarrow downarrow$) and $B$ ($uparrow downarrow uparrow downarrow$) magnetic order parameters separated by static antiphase boundaries at low temperatures. Neutron diffraction and bulk susceptibility measurements, show that the spins near these boundaries are weakly correlated and a carry an uncompensated ferromagnetic moment that can be tuned with a magnetic field. Spectroscopic measurements find these spins are bound with excitation energies less than the bulk magnetic spin-waves and resemble the spectra from isolated spin-clusters. Localized bound orphaned spins separate the two competing magnetic order parameters in CaFe$_{2}$O$_{4}$.
In view of the recent experimental predictions of a weak structural transition in CoV$_{2}$O$_{4}$ we explore the possible orbital order states in its low temperature tetragonal phases from first principles density functional theory calculations. We
CaFe$_{2}$O$_{4}$ is an $S=5/2$ antiferromagnet exhibiting two magnetic orders which shows regions of coexistence at some temperatures. Using a Greens function formalism, we model neutron scattering data of the spin wave excitations in this material,
We performed elastic neutron scattering measurements on the charge- and magnetically-ordered multiferroic material LuFe(2)O(4). An external electric field along the [001] direction with strength up to 20 kV/cm applied at low temperature (~100 K) does
Measurements of the anisotropic properties of single crystals play a crucial role in probing the physics of new materials. Determining a growth protocol that yields suitable high-quality single crystals can be particularly challenging for multi-compo
By means of photoemission and x-ray absorption spectroscopy, we have studied the electronic structure of (Ni,Zn,Fe,Ti)$_{3}$O$_{4}$ thin films, which exhibits a cluster glass behavior with a spin-freezing temperature $T_f$ of $sim 230$ K and photo-in