ﻻ يوجد ملخص باللغة العربية
Hadron decay chains constitute one of the main sources of information on the QCD spectrum. We discuss the differences between several partial wave analysis formalisms used in the literature to build the amplitudes. We match the helicity amplitudes to the covariant tensor basis. Hereby, we pay attention to the analytical properties of the amplitudes and separate singularities of kinematical and dynamical nature. We study the analytical properties of the spin-orbit (LS) formalism, and some of the covariant tensor approaches. In particular, we explicitly build the amplitudes for the B -> psi pi K and B -> Dbar pi pi decays, and show that the energy dependence of the covariant approach is model dependent. We also show that the usual recursive construction of covariant tensors explicitly violates crossing symmetry, which would lead to different resonance parameters extracted from scattering and decay processes.
We discuss the differences between several partial-wave analysis formalisms used in the construction of three-body decay amplitudes involving fermions. Specifically, we consider the decay Lambda_b -> psi p K- , where the hidden charm pentaquark signa
We study the formation of the directed flow of hadrons in nuclear collisions at energies between AGS and SPS in Monte Carlo cascade model. The slope of the proton flow at midrapidity tends to zero (softening) with increasing impact parameter of the c
We study the constraints imposed by perturbative unitarity on the new physics interpretation of the muon $g-2$ anomaly. Within a Standard Model Effective Field Theory (SMEFT) approach, we find that scattering amplitudes sourced by effective operators
In this article we study the problem of document image representation based on visual features. We propose a comprehensive experimental study that compares three types of visual document image representations: (1) traditional so-called shallow featur
We consider right-handed neutrino pair production in generic $Z^prime$ models. We propose a new, model-independent analysis using final states containing a pair of same-sign muons. A key aspect of this analysis is the reconstruction of the RH neutrin