ﻻ يوجد ملخص باللغة العربية
We present results from light scattering experiments on tetragonal FeS with the focus placed on lattice dynamics. We identify the Raman active A1g and B1g phonon modes, a second order scattering process involving two acoustic phonons, and contributions from potentially defect-induced scattering. The temperature dependence between 300 and 20K of all observed phonon energies is governed by the lattice contraction. Below 20K the phonon energies increase by 0.5-1 cm$^{-1}$ thus indicating putative short range magnetic order. Along with the experiments we performed lattice-dynamical simulations and a symmetry analysis for the phonons and potential overtones and find good agreement with the experiments. In particular, we argue that the two-phonon excitation observed in a gap between the optical branches becomes observable due to significant electron-phonon interaction.
Low temperature specific heat has been measured in superconductor $beta$-FeS with T$_c$ = 4.55 K. It is found that the low temperature electronic specific heat C$_e$/T can be fitted to a linear relation in the low temperature region, but fails to be
Here we report the electronic structure of FeS, a recently identified iron-based superconductor. Our high-resolution angle-resolved photoemission spectroscopy studies show two hole-like ($alpha$ and $beta$) and two electron-like ($eta$ and $delta$) F
We study the temperature dependence of the low energy phonons in the $(H, 0, L)$ reciprocal plane of the highly ordered ortho-II YBa$_2$Cu$_3$O$_{6.55}$ cuprate high temperature superconductor by means of high-resolution inelastic x-ray scattering. A
We report the novel preparation of single crystals of tetragonal iron sulfide, FeS, which exhibits a nearly ideal tetrahedral geometry with S--Fe--S bond angles of 110.2(2) $^circ$ and 108.1(2) $^circ$. Grown via hydrothermal de-intercalation of K${_
The magnetoresistance and magnetic torque of FeS are measured in magnetic fields $B$ of up to 18 T down to a temperature of 0.03 K. The superconducting transition temperature is found to be $T_c$ = 4.1 K, and the anisotropy ratio of the upper critica