ﻻ يوجد ملخص باللغة العربية
Hefetz, M{u}tze, and Schwartz conjectured that every connected undirected graph admits an antimagic orientation. In this paper we support the analogous question for distance magic labeling. Let $Gamma$ be an Abelian group of order $n$. A textit{directed $Gamma$-distance magic labeling} of an oriented graph $vec{G} = (V,A)$ of order $n$ is a bijection $vec{l}:V rightarrow Gamma$ with the property that there is a textit{magic constant} $mu in Gamma$ such that for every $x in V(G)$ $ w(x) = sum_{y in N^{+}(x)}vec{l}(y) - sum_{y in N^{-}(x)} vec{l}(y) = mu. $ In this paper we provide an infinite family of odd regular graphs possessing an orientable $mathbb{Z}_{n}$-distance magic labeling. Our results refer to lexicographic product of graphs. We also present a family of odd regular graphs that are not orientable $mathbb{Z}_{n}$-distance magic.
In this paper infinite families of linear binary nested completely regular codes are constructed. They have covering radius $rho$ equal to $3$ or $4$, and are $1/2^i$-th parts, for $iin{1,ldots,u}$ of binary (respectively, extended binary) Hamming co
Characterizations graphs of some classes to induce periodic Grover walks have been studied for recent years. In particular, for the strongly regular graphs, it has been known that there are only three kinds of such graphs. Here, we focus on the perio
Suppose that D is an acyclic orientation of a graph G. An arc of D is called dependent if its reversal creates a directed cycle. Let m and M denote the minimum and the maximum of the number of dependent arcs over all acyclic orientations of G. We cal
A known Kronecker construction of completely regular codes has been investigated taking different alphabets in the component codes. This approach is also connected with lifting constructions of completely regular codes. We obtain several classes of c
A Norton algebra is an eigenspace of a distance regular graph endowed with a commutative nonassociative product called the Norton product, which is defined as the projection of the entrywise product onto this eigenspace. The Norton algebras are usefu