ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual Origin of Room Temperature Sub-Terahertz Photoresponse in Graphene Field Effect Transistors

194   0   0.0 ( 0 )
 نشر من قبل Dmitry Svintsov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene is considered as a promising platform for detectors of high-frequency radiation up to the terahertz (THz) range due to graphene$$s superior electron mobility. Previously it has been shown that graphene field effect transistors (FETs) exhibit room temperature broadband photoresponse to incoming THz radiation thanks to the thermoelectric and/or plasma wave rectification. Both effects exhibit similar functional dependences on the gate voltage and therefore it was found to be difficult to disentangle these contributions in the previous studies. In this letter, we report on combined experimental and theoretical studies of sub-THz response in graphene field-effect transistors analyzed at different temperatures. This temperature-dependent study allowed us to reveal the role of photo-thermoelectric effect, p-n junction rectification, and plasmonic rectification in the sub-THz photoresponse of graphene FETs.



قيم البحث

اقرأ أيضاً

The unique optoelectronic properties of graphene [1] make it an ideal platform for a variety of photonic applications [2], including fast photodetectors [3], transparent electrodes [4], optical modulators [5], and ultra-fast lasers [6]. Owing to its high carrier mobility, gapless spectrum, and frequency-independent absorption coefficient, it has been recognized as a very promising element for the development of detectors and modulators operating in the Terahertz (THz) region of the electromagnetic spectrum (wavelengths in the hundreds of micrometers range), which is still severely lacking in terms of solid-state devices. Here we demonstrate efficient THz detectors based on antenna-coupled graphene field-effect transistors (FETs). These exploit the non-linear FET response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature (RT) operation at 0.3 THz, with noise equivalent power (NEP) levels < 30 nW/Hz^(1/2), showing that our devices are well beyond a proof-of-concept phase and can already be used in a realistic setting, enabling large area, fast imaging of macroscopic samples.
We report on reflective electro-optic sampling measurements of TeraHertz emission from nanometer-gate-length InGaAs-based high electron mobility transistors. The room temperature coherent gate-voltage tunable emission is demonstrated. We establish th at the physical mechanism of the coherent TeraHertz emission is related to the plasma waves driven by simultaneous current and optical excitation. A significant shift of the plasma frequency and the narrowing of the emission with increasing channels current are observed and explained as due to the increase of the carriers density and drift velocity.
Terahertz (THz) radiation has uses from security to medicine; however, sensitive room-temperature detection of THz is notoriously difficult. The hot-electron photothermoelectric effect in graphene is a promising detection mechanism: photoexcited carr iers rapidly thermalize due to strong electron-electron interactions, but lose energy to the lattice more slowly. The electron temperature gradient drives electron diffusion, and asymmetry due to local gating or dissimilar contact metals produces a net current via the thermoelectric effect. Here we demonstrate a graphene thermoelectric THz photodetector with sensitivity exceeding 10 V/W (700 V/W) at room temperature and noise equivalent power less than 1100 pW/Hz^1/2 (20 pW/Hz^1/2), referenced to the incident (absorbed) power. This implies a performance which is competitive with the best room-temperature THz detectors for an optimally coupled device, while time-resolved measurements indicate that our graphene detector is eight to nine orders of magnitude faster than those. A simple model of the response, including contact asymmetries (resistance, work function and Fermi-energy pinning) reproduces the qualitative features of the data, and indicates that orders-of-magnitude sensitivity improvements are possible.
We study the origin of photocurrent generated in doped multilayer BP photo-transistors, and find that it is dominated by thermally driven thermoelectric and bolometric processes. The experimentally observed photocurrent polarities are consistent with photo-thermal processes. The photo-thermoelectric current can be generated up to a $mu$m away from the contacts, indicating a long thermal decay length. With an applied source-drain bias, a photo-bolometric current is generated across the whole device, overwhelming the photo-thermoelectric contribution at a moderate bias. The photo-responsivity in the multilayer BP device is two orders of magnitude larger than that observed in graphene.
In this study, InSb nanowires have been formed by electrodeposition and integrated into NW-FETs. NWs were formed in porous anodic alumina (PAA) templates, with the PAA pore diameter of approximately 100 nm defining the NW diameter. Following annealin g at 125C and 420C respectively, the nanowires exhibited the zinc blende crystalline structure of InSb, as confirmed from x-ray diffraction and high resolution transmission electron microscopy. The annealed nanowires were used to fabricate nanowire field effect transistors (NW-FET) each containing a single NW with 500 nm channel length and gating through a 20nm SiO2 layer on a doped Si wafer. Following annealing of the NW-FETs at 300C for 10 minutes in argon ambient, transistor characteristics were observed with an ION ~ 40 uA (at VDS = 1V in a back-gate configuration), ION/IOFF ~ 16 - 20 in the linear regime of transistor operation and gd ~ 71uS. The field effect electron mobility extracted from the transconductance was ~1200 cm2 V-1 s-1 at room temperature. We report high on-current per nanowire compared with other reported NW-FETs with back-gate geometry and current saturation at low source-drain voltages. The device characteristics are not well described by long-channel MOSFET models, but can qualitatively be understood in terms of velocity saturation effects accounting for enhanced scattering
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا