ﻻ يوجد ملخص باللغة العربية
We present results for in-medium spectral functions obtained within the Functional Renormalization Group framework. The analytic continuation from imaginary to real time is performed in a well-defined way on the level of the flow equations. Based on this recently developed method, results for the sigma and the pion spectral function for the quark-meson model are shown at finite temperature, finite quark-chemical potential and finite spatial momentum. It is shown how these spectral function become degenreate at high temperatures due to the restoration of chiral symmetry. In addition, results for vector- and axial-vector meson spectral functions are shown using a gauged linear sigma model with quarks. The degeneration of the $rho$ and the $a_1$ spectral function as well as the behavior of their pole masses is discussed.
We employ the functional renormalization group approach formulated on the Schwinger-Keldysh contour to calculate real-time correlation functions in scalar field theories. We provide a detailed description of the formalism, discuss suitable truncation
We introduce a systematic approach for the resummation of perturbative series which involve large logarithms not only due to large invariant mass ratios but large rapidities as well. Series of this form can appear in a variety of gauge theory observa
Our renormalization group consistent variant of optimized perturbation, RGOPT, is used to calculate the nonperturbative QCD spectral density of the Dirac operator and the related chiral quark condensate $langle bar q q rangle$, for $n_f=2$ and $n_f=3
Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional
The spectrum of two-point functions in a holographic renormalization group flow from an ultraviolet (UV) to an infrared (IR) conformal fixed point is necessarily continuous. For a toy model, the spectral function does not only show the expected UV an