ﻻ يوجد ملخص باللغة العربية
We describe a method to tune, in-situ, between transverse and longitudinal light-matter coupling in a hybrid circuit-QED device composed of an electron spin degree of freedom coupled to a microwave transmission line cavity. Our approach relies on periodic modulation of the coupling itself, such that in a certain frame the interaction is both amplified and either transverse, or, by modulating at two frequencies, longitudinal. The former realizes an effective simulation of certain aspects of the ultra-strong coupling regime, while the latter allows one to implement a longitudinal readout scheme even when the intrinsic Hamiltonian is transverse, and the individual spin or cavity frequencies cannot be changed. We analyze the fidelity of using such a scheme to measure the state of the electron spin degree of freedom, and argue that the longitudinal readout scheme can operate in regimes where the traditional dispersive approach fails.
Photonic states of superconducting microwave cavities controlled by transmon ancillas provide a platform for encoding and manipulating quantum information. A key challenge in scaling up the platform is the requirement to communicate on demand the inf
Superconducting electrical circuits can be used to study the physics of cavity quantum electrodynamics (QED) in new regimes, therefore realizing circuit QED. For quantum information processing and quantum optics, an interesting regime of circuit QED
Superconducting quantum circuits possess the ingredients for quantum information processing and for developing on-chip microwave quantum optics. From the initial manipulation of few-level superconducting systems (qubits) to their strong coupling to
In this experiment, we couple a superconducting Transmon qubit to a high-impedance $645 Omega$ microwave resonator. Doing so leads to a large qubit-resonator coupling rate $g$, measured through a large vacuum Rabi splitting of $2gsimeq 910$ MHz. The
We propose a superconducting circuit platform for simulating spin-1 models. To this purpose we consider a chain of N ultrastrongly coupled qubit-resonator systems interacting through a grounded SQUID. The anharmonic spectrum of the qubit-resonator sy