ترغب بنشر مسار تعليمي؟ اضغط هنا

Deconstructing the neutrino mass constraint from galaxy redshift surveys

184   0   0.0 ( 0 )
 نشر من قبل Aoife Boyle
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The total mass of neutrinos can be constrained in a number of ways using galaxy redshift surveys. Massive neutrinos modify the expansion rate of the Universe, which can be measured using baryon acoustic oscillations (BAOs) or the Alcock-Paczynski (AP) test. Massive neutrinos also change the structure growth rate and the amplitude of the matter power spectrum, which can be measured using redshift-space distortions (RSD). We use the Fisher matrix formalism to disentangle these information sources, to provide projected neutrino mass constraints from each of these probes alone and to determine how sensitive each is to the assumed cosmological model. We isolate the distinctive effect of neutrino free-streaming on the matter power spectrum and structure growth rate as a signal unique to massive neutrinos that can provide the most robust constraints, which are relatively insensitive to extensions to the cosmological model beyond $Lambda$CDM. We also provide forecasted constraints using all of the information contained in the observed galaxy power spectrum combined, and show that these maximally optimistic constraints are primarily limited by the accuracy to which the optical depth of the cosmic microwave background, $tau$, is known.



قيم البحث

اقرأ أيضاً

The absolute neutrino mass scale is currently unknown, but can be constrained from cosmology. The WiggleZ high redshift star-forming blue galaxy sample is less sensitive to systematics from non-linear structure formation, redshift-space distortions a nd galaxy bias than previous surveys. We obtain a upper limit on the sum of neutrino masses of 0.60eV (95% confidence) for WiggleZ+Wilkinson Microwave Anisotropy Probe. Combining with priors on the Hubble Parameter and the baryon acoustic oscillation scale gives an upper limit of 0.29eV, which is the strongest neutrino mass constraint derived from spectroscopic galaxy redshift surveys.
111 - Vincenzo Salzano 2016
We investigate a new method to recover (if any) a possible varying speed of light (VSL) signal from cosmological data. It comes as an upgrade of [1,2], where it was argued that such signal could be detected at a single redshift location only. Here, w e show how it is possible to extract information on a VSL signal on an extended redshift range. We use mock cosmological data from future galaxy surveys (BOSS, DESI, emph{WFirst-2.4} and SKA): the sound horizon at decoupling imprinted in the clustering of galaxies (BAO) as an angular diameter distance, and the expansion rate derived from those galaxies recognized as cosmic chronometers. We find that, given the forecast sensitivities of such surveys, a $sim1%$ VSL signal can be detected at $3sigma$ confidence level in the redshift interval $z in [0.,1.55]$. Smaller signals $(sim0.1%)$ will be hardly detected (even if some lower possibility for a $1sigma$ detection is still possible). Finally, we discuss the degeneration between a VSL signal and a non-null spatial curvature; we show that, given present bounds on curvature, any signal, if detected, can be attributed to a VSL signal with a very high confidence. On the other hand, our method turns out to be useful even in the classical scenario of a constant speed of light: in this case, the signal we reconstruct can be totally ascribed to spatial curvature and, thus, we might have a method to detect a $0.01$-order curvature in the same redhift range with a very high confidence.
79 - L. Guzzo , J. Bel , D. Bianchi 2018
Galaxy redshift surveys are one of the pillars of the current standard cosmological model and remain a key tool in the experimental effort to understand the origin of cosmic acceleration. To this end, the next generation of surveys aim at achieving s ub-percent precision in the measurement of the equation of state of dark energy $w(z)$ and the growth rate of structure $f(z)$. This however requires comparable control over systematic errors, stressing the need for improved modelling methods. In this contribution we review at the introductory level some highlights of the work done in this direction by the {it Darklight} project. Supported by an ERC Advanced Grant, {it Darklight} developed novel techniques for clustering analysis, which were tested through numerical simulations before being finally applied to galaxy data as in particular those of the recently completed VIPERS redshift survey. We focus in particular on: (a) advances on estimating the growth rate of structure from redshift-space distortions; (b) parameter estimation through global Bayesian reconstruction of the density field from survey data; (c) impact of massive neutrinos on large-scale structure measurements. Overall, {it Darklight} has contributed to paving the way for forthcoming high-precision experiments, such as {it Euclid}, the next ESA cosmological mission.
Survey observations of the three-dimensional locations of galaxies are a powerful approach to measure the distribution of matter in the universe, which can be used to learn about the nature of dark energy, physics of inflation, neutrino masses, etc. A competitive survey, however, requires a large volume (e.g., Vsurvey is roughly 10 Gpc3) to be covered, and thus tends to be expensive. A sparse sampling method offers a more affordable solution to this problem: within a survey footprint covering a given survey volume, Vsurvey, we observe only a fraction of the volume. The distribution of observed regions should be chosen such that their separation is smaller than the length scale corresponding to the wavenumber of interest. Then one can recover the power spectrum of galaxies with precision expected for a survey covering a volume of Vsurvey (rather than the volume of the sum of observed regions) with the number density of galaxies given by the total number of observed galaxies divided by Vsurvey (rather than the number density of galaxies within an observed region). We find that regularly-spaced sampling yields an unbiased power spectrum with no window function effect, and deviations from regularly-spaced sampling, which are unavoidable in realistic surveys, introduce calculable window function effects and increase the uncertainties of the recovered power spectrum. While we discuss the sparse sampling method within the context of the forthcoming Hobby-Eberly Telescope Dark Energy Experiment, the method is general and can be applied to other galaxy surveys.
Accurately characterizing the redshift distributions of galaxies is essential for analysing deep photometric surveys and testing cosmological models. We present a technique to simultaneously infer redshift distributions and individual redshifts from photometric galaxy catalogues. Our model constructs a piecewise constant representation (effectively a histogram) of the distribution of galaxy types and redshifts, the parameters of which are efficiently inferred from noisy photometric flux measurements. This approach can be seen as a generalization of template-fitting photometric redshift methods and relies on a library of spectral templates to relate the photometric fluxes of individual galaxies to their redshifts. We illustrate this technique on simulated galaxy survey data, and demonstrate that it delivers correct posterior distributions on the underlying type and redshift distributions, as well as on the individual types and redshifts of galaxies. We show that even with uninformative priors, large photometric errors and parameter degeneracies, the redshift and type distributions can be recovered robustly thanks to the hierarchical nature of the model, which is not possible with common photometric redshift estimation techniques. As a result, redshift uncertainties can be fully propagated in cosmological analyses for the first time, fulfilling an essential requirement for the current and future generations of surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا