ترغب بنشر مسار تعليمي؟ اضغط هنا

A Data-Driven Gradient Algorithm for High-Precision Quantum Control

140   0   0.0 ( 0 )
 نشر من قبل Re-Bing Wu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., GRAPE) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by deterministic or random errors in the system model and the control electronics. In this paper, we show that GRAPE can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-GRAPE) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-GRAPE algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit CNOT gate.



قيم البحث

اقرأ أيضاً

62 - Keren Li , Pan Gao , Shijie Wei 2020
Gradient-based algorithms, popular strategies to optimization problems, are essential for many modern machine-learning techniques. Theoretically, extreme points of certain cost functions can be found iteratively along the directions of the gradient. The time required to calculating the gradient of $d$-dimensional problems is at a level of $mathcal{O}(poly(d))$, which could be boosted by quantum techniques, benefiting the high-dimensional data processing, especially the modern machine-learning engineering with the number of optimized parameters being in billions. Here, we propose a quantum gradient algorithm for optimizing general polynomials with the dressed amplitude encoding, aiming at solving fast-convergence polynomials problems within both time and memory consumption in $mathcal{O}(poly (log{d}))$. Furthermore, numerical simulations are carried out to inspect the performance of this protocol by considering the noises or perturbations from initialization, operation and truncation. For the potential values in high-dimension optimizations, this quantum gradient algorithm is supposed to facilitate the polynomial-optimizations, being a subroutine for future practical quantum computer.
247 - Shibei Xue , Rebing Wu , Dewei Li 2019
In this paper, we present a gradient algorithm for identifying unknown parameters in an open quantum system from the measurements of time traces of local observables. The open system dynamics is described by a general Markovian master equation based on which the Hamiltonian identification problem can be formulated as minimizing the distance between the real time traces of the observables and those predicted by the master equation. The unknown parameters can then be learned with a gradient descent algorithm from the measurement data. We verify the effectiveness of our algorithm in a circuit QED system described by a Jaynes-Cumming model whose Hamiltonian identification has been rarely considered. We also show that our gradient algorithm can learn the spectrum of a non-Markovian environment based on an augmented system model.
The Stark shift of the hyperfine coupling constant is investigated for a P donor in Si far below the ionization regime in the presence of interfaces using Tight-binding and Band Minima Basis approaches and compared to the recent precision measurement s. The TB electronic structure calculations included over 3 million atoms. In contrast to previous effective mass based results, the quadratic Stark coefficient obtained from both theories agrees closely with the experiments. This work represents the most sensitive and precise comparison between theory and experiment for single donor spin control. It is also shown that there is a significant linear Stark effect for an impurity near the interface, whereas, far from the interface, the quadratic Stark effect dominates. Such precise control of single donor spin states is required particularly in quantum computing applications of single donor electronics, which forms the driving motivation of this work.
120 - Yulong Dong , Xiang Meng , Lin Lin 2019
Quantum variational algorithms have garnered significant interest recently, due to their feasibility of being implemented and tested on noisy intermediate scale quantum (NISQ) devices. We examine the robustness of the quantum approximate optimization algorithm (QAOA), which can be used to solve certain quantum control problems, state preparation problems, and combinatorial optimization problems. We demonstrate that the error of QAOA simulation can be significantly reduced by robust control optimization techniques, specifically, by sequential convex programming (SCP), to ensure error suppression in situations where the source of the error is known but not necessarily its magnitude. We show that robust optimization improves both the objective landscape of QAOA as well as overall circuit fidelity in the presence of coherent errors and errors in initial state preparation.
Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm can produce an explicit description. However, while high-precision quantum algorithms for linear or dinary differential equations are well established, the best previous quantum algorithms for linear partial differential equations (PDEs) have complexity $mathrm{poly}(1/epsilon)$, where $epsilon$ is the error tolerance. By developing quantum algorithms based on adaptive-order finite difference methods and spectral methods, we improve the complexity of quantum algorithms for linear PDEs to be $mathrm{poly}(d, log(1/epsilon))$, where $d$ is the spatial dimension. Our algorithms apply high-precision quantum linear system algorithms to systems whose condition numbers and approximation errors we bound. We develop a finite difference algorithm for the Poisson equation and a spectral algorithm for more general second-order elliptic equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا