ترغب بنشر مسار تعليمي؟ اضغط هنا

Reannihilation of self-interacting dark matter

157   0   0.0 ( 0 )
 نشر من قبل Tobias Binder
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the phenomenology of having a second epoch of dark matter annihilation into dark radiation long after the standard thermal freeze-out. Such a hidden reannihilation process could affect visible sectors only gravitationally. As a concrete realization we consider self-interacting dark matter (SIDM) with a light force mediator coupled to dark radiation. We demonstrate how resonantly Sommerfeld enhanced cross sections emerge to induce the reannihilation epoch. The effect is a temporally local modification of the Hubble expansion rate and we show that the Cosmic Microwave Background (CMB) measurements -- as well as other observations -- have a high sensitivity to observe this phenomenon. Special attention is given to the model region where late kinetic decoupling and strong self-interactions can alleviate several small-scale problems in the cold dark matter paradigm at the same time. Interestingly, we find that reannihilation might here also simultaneously lower the tension between CMB and low-redshift astronomical observations of $H_{0}$ and $sigma_{8}$. Moreover, we identify reannihilation as a clear signature to discriminate between the phenomenologically otherwise almost identical vector and scalar mediator realizations of SIDM.



قيم البحث

اقرأ أيضاً

We investigate cosmological implications of an energy density contribution arising by elastic dark matter self-interactions. Its scaling behaviour shows that it can be the dominant energy contribution in the early universe. Constraints from primordia l nucleosynthesis give an upper limit on the self-interaction strength which allows for the same strength as standard model strong interactions. Furthermore we explore the cosmological consequences of an early self-interaction dominated universe. Chemical dark matter decoupling requires that self-interacting dark matter particles are rather light (keV range) but we find that super-weak inelastic interactions are predicted by strong elastic dark matter self-interactions. Assuming a second, collisionless cold dark matter component, its natural decoupling scale exceeds the weak scale and is in accord with the electron and positron excess observed by PAMELA and Fermi-LAT. Structure formation analysis reveals a linear growing solution during self-interaction domination, enhancing structures up to ~ 10^(-3) solar masses long before the formation of the first stars.
We study the evolution of cosmological perturbations in dark-matter models with elastic and velocity-independent self interactions. Such interactions are imprinted in the matter-power spectrum as dark acoustic oscillations, which can be experimentall y explored to determine the strength of the self scatterings. Models with self interactions have similarities to warm dark matter, as they lead to suppression of power on small scales when the dark-matter velocity dispersion is sizable. Nonetheless, both the physical origin and the extent of the suppression differ for self-interacting dark matter from conventional warm dark matter, with a dark sound horizon controlling the reduction of power in the former case, and a free-streaming length in the latter. We thoroughly analyze these differences by performing computations of the linear power spectrum using a newly developed Boltzmann code. We find that while current Lyman-$alpha$ data disfavor conventional warm dark matter with a mass less than 5.3 keV, when self interactions are included at their maximal value consistent with bounds from the Bullet Cluster, the limits are relaxed to 4.4 keV. Finally, we make use of our analysis to set novel bounds on light scalar singlet dark matter.
We probe the self-interactions of dark matter using observational data of relaxed galaxy groups and clusters. Our analysis uses the Jeans formalism and considers a wider range of systematic effects than in previous work, including adiabatic contracti on and stellar anisotropy, to robustly constrain the self-interaction cross section. For both groups and clusters, our results show a mild preference for a nonzero cross section compared with cold collisionless dark matter. Our groups result, $sigma/m=0.5pm0.2~mathrm{cm}^2/mathrm{g}$, places the first constraint on self-interacting dark matter (SIDM) at an intermediate scale between galaxies and massive clusters. Our clusters result is $sigma/m=0.19pm0.09~mathrm{cm}^2/mathrm{g}$, with an upper limit of $sigma / m < 0.35~mathrm{cm}^2/mathrm{g}$ (95% CL). Thus, our results disfavor a velocity-independent cross section of order $1~mathrm{cm}^2/mathrm{g}$ or larger needed to address small scale structure problems in galaxies, but are consistent with a velocity-dependent cross section that decreases with increasing scattering velocity. Comparing the cross sections with and without the effect of adiabatic contraction, we find that adiabatic contraction produces slightly larger values for our data sample, but they are consistent at the $1sigma$ level. Finally, to validate our approach, we apply our Jeans analysis to a sample of mock data generated from SIDM-plus-baryons simulations with $sigma/m = 1~mathrm{cm}^2/mathrm{g}$. This is the first test of the Jeans model at the level of stellar and lensing observables directly measured from simulations. We find our analysis gives a robust determination of the cross section, as well as consistently inferring the true baryon and dark matter density profiles.
Self-interacting dark matter offers an interesting alternative to collisionless dark matter because of its ability to preserve the large-scale success of the cold dark matter model, while seemingly solving its challenges on small scales. We present h ere the first study of the expected dark matter detection signal taking into account different self-scattering models. We demonstrate that models with constant and velocity dependent cross sections, which are consistent with observational constraints, lead to distinct signatures in the velocity distribution, because non-thermalised features found in the cold dark matter distribution are thermalised through particle scattering. Depending on the model, self-interaction can lead to a 10% reduction of the recoil rates at high energies, corresponding to a minimum speed that can cause recoil larger than 300 km/s, compared to the cold dark matter case. At lower energies these differences are smaller than 5% for all models. The amplitude of the annual modulation signal can increase by up to 25%, and the day of maximum amplitude can shift by about two weeks with respect to the cold dark matter expectation. Furthermore, the exact day of phase reversal of the modulation signal can also differ by about a week between the different models. In general, models with velocity dependent cross sections peaking at the typical velocities of dwarf galaxies lead only to minor changes in the detection signals, whereas allowed constant cross section models lead to significant changes. We conclude that different self-interacting dark matter scenarios might be distinguished from each other through the details of direct detection signals. Furthermore, detailed constraints on the intrinsic properties of dark matter based on null detections, should take into account the possibility of self-scattering and the resulting effects on the detector signal.
Short baseline neutrino oscillation experiments have shown hints of the existence of additional sterile neutrinos in the eV mass range. Such sterile neutrinos are incompatible with cosmology because they suppress structure formation unless they can b e prevented from thermalising in the early Universe or removed by subsequent decay or annihilation. Here we present a novel scenario in which both sterile neutrinos and dark matter are coupled to a new, light pseudoscalar. This can prevent thermalisation of sterile neutrinos and make dark matter sufficiently self-interacting to have an impact on galactic dynamics and possibly resolve some of the known problems with the standard cold dark matter scenario. Even more importantly it leads to a strongly self-interacting plasma of sterile neutrinos and pseudoscalars at late times and provides an excellent fit to CMB data. The usual cosmological neutrino mass problem is avoided by sterile neutrino annihilation to pseudoscalars. The preferred value of $H_0$ is substantially higher than in standard $Lambda$CDM and in much better agreement with local measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا