ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle Computation: Complexity, Algorithms, and Logic

57   0   0.0 ( 0 )
 نشر من قبل Sandor P. Fekete
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate algorithmic control of a large swarm of mobile particles (such as robots, sensors, or building material) that move in a 2D workspace using a global input signal (such as gravity or a magnetic field). We show that a maze of obstacles to the environment can be used to create complex systems. We provide a wide range of results for a wide range of questions. These can be subdivided into external algorithmic problems, in which particle configurations serve as input for computations that are performed elsewhere, and internal logic problems, in which the particle configurations themselves are used for carrying out computations. For external algorithms, we give both negative and positive results. If we are given a set of stationary obstacles, we prove that it is NP-hard to decide whether a given initial configuration of unit-sized particles can be transformed into a desired target configuration. Moreover, we show that finding a control sequence of minimum length is PSPACE-complete. We also work on the inverse problem, providing constructive algorithms to design workspaces that efficiently implement arbitrary permutations between different configurations. For internal logic, we investigate how arbitrary computations can be implemented. We demonstrate how to encode dual-rail logic to build a universal logic gate that concurrently evaluates and, nand, nor, and or operations. Using many of these gates and appropriate interconnects, we can evaluate any logical expression. However, we establish that simulating the full range of complex interactions present in arbitrary digital circuits encounters a fundamental difficulty: a fan-out gate cannot be generated. We resolve this missing component with the help of 2x1 particles, which can create fan-out gates that produce multiple copies of the inputs. Using these gates we provide rules for replicating arbitrary digital circuits.



قيم البحث

اقرأ أيضاً

In this paper we present novel algorithms for several multidimensional data processing problems. We consider problems related to the computation of restricted clusters and of the diameter of a set of points using a new distance function. We also cons ider two string (1D data) processing problems, regarding an optimal encoding method and the computation of the number of occurrences of a substring within a string generated by a grammar. The algorithms have been thoroughly analyzed from a theoretical point of view and some of them have also been evaluated experimentally.
We discuss some claims that certain UCOMP devices can perform hypercomputation (compute Turing-uncomputable functions) or perform super-Turing computation (solve NP-complete problems in polynomial time). We discover that all these claims rely on the provision of one or more unphysical resources.
We consider the convex hull $P_{varphi}(G)$ of all satisfying assignments of a given MSO formula $varphi$ on a given graph $G$. We show that there exists an extended formulation of the polytope $P_{varphi}(G)$ that can be described by $f(|varphi|,tau )cdot n$ inequalities, where $n$ is the number of vertices in $G$, $tau$ is the treewidth of $G$ and $f$ is a computable function depending only on $varphi$ and $tau.$ In other words, we prove that the extension complexity of $P_{varphi}(G)$ is linear in the size of the graph $G$, with a constant depending on the treewidth of $G$ and the formula $varphi$. This provides a very general yet very simple meta-theorem about the extension complexity of polytopes related to a wide class of problems and graphs. As a corollary of our main result, we obtain an analogous result % for the weaker MSO$_1$ logic on the wider class of graphs of bounded cliquewidth. Furthermore, we study our main geometric tool which we term the glued product of polytopes. While the glued product of polytopes has been known since the 90s, we are the first to show that it preserves decomposability and boundedness of treewidth of the constraint matrix. This implies that our extension of $P_varphi(G)$ is decomposable and has a constraint matrix of bounded treewidth; so far only few classes of polytopes are known to be decomposable. These properties make our extension useful in the construction of algorithms.
Monolithic three-dimensional integration of memory and logic circuits could dramatically improve performance and energy efficiency of computing systems. Some conventional and emerging memories are suitable for vertical integration, including highly s calable metal-oxide resistive switching devices (memristors), yet integration of logic circuits proves to be much more challenging. Here we demonstrate memory and logic functionality in a monolithic three-dimensional circuit by adapting recently proposed memristor-based stateful material implication logic. Though such logic has been already implemented with a variety of memory devices, prohibitively large device variability in the most prospective memristor-based circuits has limited experimental demonstrations to simple gates and just a few cycles of operations. By developing a low-temperature, low-variability fabrication process, and modifying the original circuit to increase its robustness to device imperfections, we experimentally show, for the first time, reliable multi-cycle multi-gate material implication logic operation within a three-dimensional stack of monolithically integrated memristors. The direct data manipulation in three dimensions enables extremely compact and high-throughput logic-in-memory computing and, remarkably, presents a viable solution for the Feynman grand challenge of implementing an 8-bit adder at the nanoscale.
This paper proposes the implementation of programmable threshold logic gate (TLG) crossbar array based on modified TLG cells for high speed processing and computation. The proposed TLG array operation does not depend on input signal and time pulses, comparing to the existing architectures. The circuit is implemented using TSMC $180nm$ CMOS technology. The on-chip area and power dissipation of the simulated $3times 4$ TLG array is $1463 mu m^2$ and $425 mu W$, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا