ﻻ يوجد ملخص باللغة العربية
The phenotypic plasticity of cancer cells has received special attention in recent years. Even though related models have been widely studied in terms of mathematical properties, a thorough statistical analysis on parameter estimation and model selection is still very lacking. In this study, we present a Bayesian approach on the relative frequencies of cancer stem cells (CSCs). Both Gibbs sampling and Metropolis-Hastings (MH) algorithm are used to perform point and interval estimations of cell-state transition rates between CSCs and non-CSCs. Extensive simulations demonstrate the validity of our model and algorithm. By applying this method to a published data on SW620 colon cancer cell line, the model selection favors the phenotypic plasticity model, relative to conventional hierarchical model of cancer cells. Moreover, it is found that the initial state of CSCs after cell sorting significantly influences the occurrence of phenotypic plasticity.
The conventional cancer stem cell (CSC) theory indicates a hierarchy of CSCs and non-stem cancer cells (NSCCs), that is, CSCs can differentiate into NSCCs but not vice versa. However, an alternative paradigm of CSC theory with reversible cell plastic
The paradigm of phenotypic plasticity indicates reversible relations of different cancer cell phenotypes, which extends the cellular hierarchy proposed by the classical cancer stem cell (CSC) theory. Since it is still question able if the phenotypic
The phenotypic equilibrium, i.e. heterogeneous population of cancer cells tending to a fixed equilibrium of phenotypic proportions, has received much attention in cancer biology very recently. In previous literature, some theoretical models were used
The unwelcome evolution of malignancy during cancer progression emerges through a selection process in a complex heterogeneous population structure. In the present work, we investigate evolutionary dynamics in a phenotypically heterogeneous populatio
The polarisation of cells and tissues is fundamental for tissue morphogenesis during biological development and regeneration. A deeper understanding of biological polarity pattern formation can be gained from the consideration of pattern reorganisati