ترغب بنشر مسار تعليمي؟ اضغط هنا

iPTF Archival Search for Fast Optical Transients

83   0   0.0 ( 0 )
 نشر من قبل Anna Ho
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There has been speculation of a class of relativistic explosions with an initial Lorentz factor smaller than that of classical Gamma-Ray Bursts (GRBs). These dirty fireballs would lack prompt GRB emission but could be pursued via their optical afterglow, appearing as transients that fade overnight. Here we report a search for such transients (transients that fade by 5-$sigma$ in magnitude overnight) in four years of archival photometric data from the intermediate Palomar Transient Factory (iPTF). Our search criteria yielded 45 candidates. Of these, two were afterglows to GRBs that had been found in dedicated follow-up observations to triggers from the Fermi GRB Monitor (GBM). Another (iPTF14yb; Cenko et al. 2015) was a GRB afterglow discovered serendipitously. Two were spurious artifacts of reference image subtraction and one was an asteroid. The remaining 37 candidates have red stellar counterparts in external catalogs. The photometric and spectroscopic properties of the counterparts identify these transients as strong flares from M dwarfs of spectral type M3-M7 at distances of d ~ 0.15-2.1 kpc; two counterparts were already spectroscopically classified as late-type M stars. With iPTF14yb as the only confirmed relativistic outflow discovered independently of a high-energy trigger, we constrain the all-sky rate of transients that peak at m = 18 and fade by $Delta$2 mag in $Delta$3 hr to be 680 per year with a 68% confidence interval of 119-2236 per year. This implies that the rate of visible dirty fireballs is at most comparable to that of the known population of long-duration GRBs.



قيم البحث

اقرأ أيضاً

We present the discovery of two new X-ray transients in archival Chandra data. The first transient, XRT 110103, occurred in January 2011 and shows a sharp rise of at least three orders of magnitude in count rate in less than 10 s, a flat peak for abo ut 20 s and decays by two orders of magnitude in the next 60 s. We find no optical or infrared counterpart to this event in preexisting survey data or in an observation taken by the SIRIUS instrument at the Infrared Survey Facility 2.1 yr after the transient, providing limiting magnitudes of J>18.1, H>17.6 and Ks>16.3. This event shows similarities to the transient previously reported in Jonker et al. which was interpreted as the possible tidal disruption of a white dwarf by an intermediate mass black hole. We discuss the possibility that these transients originate from the same type of event. If we assume these events are related a rough estimate of the rates gives 1.4*10^5 per year over the whole sky with a peak 0.3-7 keV X-ray flux greater than 2*10^-10 erg cm^-2 s^-1 . The second transient, XRT 120830, occurred in August 2012 and shows a rise of at least three orders of magnitude in count rate and a subsequent decay of around one order of magnitude all within 10 s, followed by a slower quasi-exponential decay over the remaining 30 ks of the observation. We detect a likely infrared counterpart with magnitudes J=16.70+/-0.06, H=15.92+/-0.04 and Ks=15.37+/-0.06 which shows an average proper motion of 74+/-19 milliarcsec per year compared to archival 2MASS observations. The JHKs magnitudes, proper motion and X-ray flux of XRT 120830 are consistent with a bright flare from a nearby late M or early L dwarf.
We performed a wide-area (2000 deg$^{2}$) g and I band experiment as part of a two month extension to the Intermediate Palomar Transient Factory. We discovered 36 extragalactic transients including iPTF17lf, a highly reddened local SN Ia, iPTF17bkj, a new member of the rare class of transitional Ibn/IIn supernovae, and iPTF17be, a candidate luminous blue variable outburst. We do not detect any luminous red novae and place an upper limit on their rate. We show that adding a slow-cadence I band component to upcoming surveys such as the Zwicky Transient Facility will improve the photometric selection of cool and dusty transients.
The Cadmium Zinc Telluride Imager on AstroSat has proven to be a very effective all-sky monitor in the hard X-ray regime, detecting over three hundred GRBs and putting highly competitive upper limits on X-ray emissions from gravitational wave sources and fast radio bursts. We present the algorithms used for searching for such transient sources in CZTI data, and for calculating upper limits in case of non-detections. We introduce CIFT: the CZTI Interface for Fast Transients, a framework used to streamline these processes. We present details of 88 new GRBs detected by this framework that were previously not detected in CZTI.
The possible origin of millisecond bursts from the giant elliptical galaxy M87 has been scrutinized since the earliest searches for extragalactic fast radio transients undertaken in the late 1970s. Motivated by rapid technological advancements in rec ent years, we conducted $rm simeq 10~hours$ of L-band ($rm 1.15-1.75~GHz$) observations of the core of M87 with the Arecibo radio telescope in 2019. Adopting a matched filtering approach, we searched our data for single pulses using trial dispersion measures up to $rm 5500~pc~cm^{-3}$ and burst durations between $rm 0.3-123~ms$. We find no evidence of astrophysical bursts in our data above a 7$sigma$ detection threshold. Our observations thus constrain the burst rate from M87 to $rm lesssim 0.1~bursts~hr^{-1}$ above $rm 1.4~Jy~ms$, the most stringent upper limit obtained to date. Our non-detection of radio bursts is consistent with expectations of giant pulse emission from a Crab-like young neutron star population in M87. However, the dense, strongly magnetized interstellar medium surrounding the central $sim 10^9 M_{odot}$ supermassive black hole of M87 may potentially harbor magnetars that can emit detectable radio bursts during their flaring states.
In this paper we present the results of a survey for radio transients using data obtained from the Very Large Array archive. We have reduced, using a pipeline procedure, 5037 observations of the most common pointings - i.e. the calibrator fields. The se fields typically contain a relatively bright point source and are used to calibrate `target observations: they are therefore rarely imaged themselves. The observations used span a time range ~ 1984 - 2008 and consist of eight different pointings, three different frequencies (8.4, 4.8 and 1.4 GHz) and have a total observing time of 435 hours. We have searched for transient and variable radio sources within these observations using components from the prototype LOFAR transient detection system. In this paper we present the methodology for reducing large volumes of Very Large Array data; and we also present a brief overview of the prototype LOFAR transient detection algorithms. No radio transients were detected in this survey, therefore we place an upper limit on the snapshot rate of GHz frequency transients > 8.0 mJy to rho less than or equal to 0.032 deg^-2 that have typical timescales 4.3 to 45.3 days. We compare and contrast our upper limit with the snapshot rates - derived from either detections or non-detections of transient and variable radio sources - reported in the literature. When compared with the current Log N - Log S distribution formed from previous surveys, we show that our upper limit is consistent with the observed population. Current and future radio transient surveys will hopefully further constrain these statistics, and potentially discover dominant transient source populations. In this paper we also briefly explore the current transient commissioning observations with LOFAR, and the impact they will make on the field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا