ﻻ يوجد ملخص باللغة العربية
Given an arbitrary projective birational morphism of varieties, we provide a natural and explicit way of constructing relative compactifications of the maps induced on the main components of the jet schemes. In the case the morphism is the Nash blow-up of a variety, such relative compactifications are shown to be given by the Nash blow-ups of the main components of the jet schemes.
It is a long-standing question whether an arbitrary variety is desingularized by finitely many normalized Nash blow-ups. We consider this question in the case of a toric variety. We interpret the normalized Nash blow-up in polyhedral terms, show how
We prove a universal property for blow-ups in regularly immersed subschemes, based on a notion we call virtual effective Cartier divisor. We also construct blow-ups of quasi-smooth closed immersions in derived algebraic geometry.
We give further counterexamples to the conjectural construction of Bridgeland stability on threefolds due to Bayer, Macr`i, and Toda. This includes smooth projective threefolds containing a divisor that contracts to a point, and Weierstra{ss} ellipti
We prove the Abelian/non-Abelian Correspondence with bundles for target spaces that are partial flag bundles, combining and generalising results by Ciocan-Fontanine-Kim-Sabbah, Brown, and Oh. From this we deduce how genus-zero Gromov-Witten invariant
Given a compact Riemann surface $X$ of genus at least $2$ with automorphism group $G$ we provide formulae that enable us to compute traces of automorphisms of X on the space of global sections of $G$-linearized line bundles defined on certain blow-up