ترغب بنشر مسار تعليمي؟ اضغط هنا

Femtosecond CDMA Using Dielectric Metasurfaces: Design Procedure and Challenges

263   0   0.0 ( 0 )
 نشر من قبل Mohammad Vahid Jamali
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

Inspired by the ever-increasing demand for higher data transmission rates and the tremendous attention toward all-optical signal processing based on miniaturized nanophotonics, in this paper, for the first time, we investigate the integrable design of coherent ultrashort light pulse code-division multiple-access (CDMA) technique, also known as femtosecond CDMA, using all-dielectric metasurfaces (MSs). In this technique, the data bits are firstly modulated using ultrashort femtosecond optical pulses generated by mode-locked lasers, and then by employing a unique phase metamask for each data stream, in order to provide the multiple access capability, the optical signals are spectrally encoded. This procedure spreads the optical signal in the temporal domain and generates low-intensity pseudo-noise bursts through random phase coding leading to minimized multiple access interference. This paper comprehensively presents the principles and design approach to realize fundamental components of a typical femtosecond CDMA encoder, including the grating, lens, and phase mask, by employing high-contrast CMOS-compatible MSs. By controlling the interference between the provided Mie and Fabry-Perot resonance modes, we tailor the spectral and spatial responses of the impinging light locally and independently. Accordingly, we design a MS-based grating with the highest possible refracted angle and, in the meantime, the maximized efficiency which results in a reasonable diameter for the subsequent lens. Moreover, to design our MS-based lens commensurate with the spot size and distance requirements of the pursuant phase mask, we leverage a new optimization method which splits the lens structure into central and peripheral parts, and then design the peripheral part using a collection of gratings converging the impinging at the subsequent phase mask.



قيم البحث

اقرأ أيضاً

553 - Juned N. Kemal 2019
Quantum-dash (QD) mode-locked laser diodes (MLLD) lend themselves as chip-scale frequency comb generators for highly scalable wavelength-division multiplexing (WDM) links in future data-center, campus-area, or metropolitan networks. Driven by a simpl e DC current, the devices generate flat broadband frequency combs, containing tens of equidistant optical tones with line spacings of tens of GHz. Here we show that QD-MLLDs can not only be used as multi-wavelength light sources at a WDM transmitter, but also as multi-wavelength local oscillators (LO) for parallel coherent reception. In our experiments, we demonstrate transmission of an aggregate data rate of 4.1 Tbit/s (23x45 GBd PDM-QPSK) over 75 km standard single-mode fiber (SSMF). To the best of our knowledge, this represents the first demonstration of a coherent WDM link that relies on QD-MLLD both at the transmitter and the receiver.
We demonstrate a fiber-integrated Fabry-Perot cavity formed by attaching a pair of dielectric metasurfaces to the ends of a hollow-core photonic-crystal fiber segment. The metasurfaces consist of perforated membranes designed as photonic-crystal slab s that act as planar mirrors but can potentially allow injection of gases through their holes into the hollow core of the fiber. We have so far observed cavities with finesse of ~11 and Q factors of ~$4.5 times 10^5$, but much higher values should be achievable with improved fabrication procedures. We expect this device to enable development of new fiber lasers, enhanced gas spectroscopy, and studies of fundamental light-matter interactions and nonlinear optics.
Ultra-fast femtosecond (fs) lasers provide a unique technological opportunity to precisely and efficiently micromachine materials with minimal thermal damage owing to the reduced heat transfer into the bulk of the work material offered by short pulse duration, high laser intensity and focused optical energy delivered on a timescale shorter than the rate of thermal diffusion into the surrounding area of a beam foci. There is an increasing demand to further develop the fs machining technology to improve the machining quality, minimize the total machining time and increase the flexibility of machining complex patterns on diamond. This article offers an overview of recent research findings on the application of fs laser technology to micromachine diamond. The laser technology to precisely micromachine diamond is discussed and detailed, with a focus on the use of fs laser irradiation systems and their characteristics, laser interaction with various types of diamonds, processing and the subsequent post-processing of the irradiated samples and, appropriate sample characterisation methods. Finally, the current and emerging application areas are discussed, and the challenges and the future research prospects in the fs laser micromachining field are also identified.
Nonlinear nanostructured surfaces provide a paradigm shift in nonlinear optics with new ways to control and manipulate frequency conversion processes at the nanoscale, also offering novel opportunities for applications in photonics, chemistry, materi al science, and biosensing. Here, we develop a general approach to employ sharp resonances in metasurfaces originated from the physics of bound states in the continuum for both engineering and enhancing the nonlinear response. We study experimentally the third-harmonic generation from metasurfaces composed of symmetry-broken silicon meta-atoms and reveal that the harmonic generation intensity depends critically on the asymmetry parameter. We employ the concept of the critical coupling of light to the metasurface resonances to uncover the effect of radiative and nonradiative losses on the nonlinear conversion efficiency.
83 - D. V. Bochek 2020
We experimentally demonstrate fabrication of tunable high contrast periodic fishnet metasurfaces with 3 um period on 200 nm thick Ge2Sb2Te5 films sputted onto glass and sapphire substrates using direct laser writing technique. We find that the use of sapphire substrate provides better accuracy of metasurface segments due to high thermal conductivity. The advantages of the demonstrated method consist in its simplicity, rapidity, robustness, and the ability of tuning of fabricated structures. This is of crucial importance for the creation of robust and tunable metasurfaces for applications in the field of telecommunications and information processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا