ترغب بنشر مسار تعليمي؟ اضغط هنا

GANGs: Generative Adversarial Network Games

99   0   0.0 ( 0 )
 نشر من قبل Jose Daniel Gallego Posada
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

Generative Adversarial Networks (GAN) have become one of the most successful frameworks for unsupervised generative modeling. As GANs are difficult to train much research has focused on this. However, very little of this research has directly exploited game-theoretic techniques. We introduce Generative Adversarial Network Games (GANGs), which explicitly model a finite zero-sum game between a generator ($G$) and classifier ($C$) that use mixed strategies. The size of these games precludes exact solution methods, therefore we define resource-bounded best responses (RBBRs), and a resource-bounded Nash Equilibrium (RB-NE) as a pair of mixed strategies such that neither $G$ or $C$ can find a better RBBR. The RB-NE solution concept is richer than the notion of `local Nash equilibria in that it captures not only failures of escaping local optima of gradient descent, but applies to any approximate best response computations, including methods with random restarts. To validate our approach, we solve GANGs with the Parallel Nash Memory algorithm, which provably monotonically converges to an RB-NE. We compare our results to standard GAN setups, and demonstrate that our method deals well with typical GAN problems such as mode collapse, partial mode coverage and forgetting.



قيم البحث

اقرأ أيضاً

We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates the CapsNet margin loss, for training CapsuleGAN models. We show that CapsuleGAN outperforms convolutional-GAN at modeling image data distribution on MNIST and CIFAR-10 datasets, evaluated on the generative adversarial metric and at semi-supervised image classification.
Seismic inverse modeling is a common method in reservoir prediction and it plays a vital role in the exploration and development of oil and gas. Conventional seismic inversion method is difficult to combine with complicated and abstract knowledge on geological mode and its uncertainty is difficult to be assessed. The paper proposes an inversion modeling method based on GAN consistent with geology, well logs, seismic data. GAN is a the most promising generation model algorithm that extracts spatial structure and abstract features of training images. The trained GAN can reproduce the models with specific mode. In our test, 1000 models were generated in 1 second. Based on the trained GAN after assessment, the optimal result of models can be calculated through Bayesian inversion frame. Results show that inversion models conform to observation data and have a low uncertainty under the premise of fast generation. This seismic inverse modeling method increases the efficiency and quality of inversion iteration. It is worthy of studying and applying in fusion of seismic data and geological knowledge.
In this paper, we present exploitability descent, a new algorithm to compute approximate equilibria in two-player zero-sum extensive-form games with imperfect information, by direct policy optimization against worst-case opponents. We prove that when following this optimization, the exploitability of a players strategy converges asymptotically to zero, and hence when both players employ this optimization, the joint policies converge to a Nash equilibrium. Unlike fictitious play (XFP) and counterfactual regret minimization (CFR), our convergence result pertains to the policies being optimized rather than the average policies. Our experiments demonstrate convergence rates comparable to XFP and CFR in four benchmark games in the tabular case. Using function approximation, we find that our algorithm outperforms the tabular version in two of the games, which, to the best of our knowledge, is the first such result in imperfect information games among this class of algorithms.
Adversarial training, a special case of multi-objective optimization, is an increasingly prevalent machine learning technique: some of its most notable applications include GAN-based generative modeling and self-play techniques in reinforcement learn ing which have been applied to complex games such as Go or Poker. In practice, a emph{single} pair of networks is typically trained in order to find an approximate equilibrium of a highly nonconcave-nonconvex adversarial problem. However, while a classic result in game theory states such an equilibrium exists in concave-convex games, there is no analogous guarantee if the payoff is nonconcave-nonconvex. Our main contribution is to provide an approximate minimax theorem for a large class of games where the players pick neural networks including WGAN, StarCraft II, and Blotto Game. Our findings rely on the fact that despite being nonconcave-nonconvex with respect to the neural networks parameters, these games are concave-convex with respect to the actual models (e.g., functions or distributions) represented by these neural networks.
In spam and malware detection, attackers exploit randomization to obfuscate malicious data and increase their chances of evading detection at test time; e.g., malware code is typically obfuscated using random strings or byte sequences to hide known e xploits. Interestingly, randomization has also been proposed to improve security of learning algorithms against evasion attacks, as it results in hiding information about the classifier to the attacker. Recent work has proposed game-theoretical formulations to learn secure classifiers, by simulating different evasion attacks and modifying the classification function accordingly. However, both the classification function and the simulated data manipulations have been modeled in a deterministic manner, without accounting for any form of randomization. In this work, we overcome this limitation by proposing a randomized prediction game, namely, a non-cooperative game-theoretic formulation in which the classifier and the attacker make randomized strategy selections according to some probability distribution defined over the respective strategy set. We show that our approach allows one to improve the trade-off between attack detection and false alarms with respect to state-of-the-art secure classifiers, even against attacks that are different from those hypothesized during design, on application examples including handwritten digit recognition, spam and malware detection.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا