ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural details of Al/Al2O3 junctions and their role in formation of electron tunnel barriers

318   0   0.0 ( 0 )
 نشر من قبل Manana Koberidze
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a computational study of the adhesive and structural properties of the Al/Al2O3 interfaces as building blocks of the Metal-Insulator-Metal (MIM) tunnel devices, where electron transport is accomplished via tunnelling mechanism through the sandwiched insulating barrier. The main goal of this paper is to understand, on the atomic scale, the role of the geometrical details in the formation of the tunnel barrier profiles. To provide reliable results, we carefully assess the accuracy of the traditional methods used to examine Al/Al2O3 interfaces. These are the most widely employed exchange-correlation functionals, LDA, PBE and PW91, the Universal Binding Energy Relation (UBER) for predicting equilibrium interfacial distances and adhesion energies, and the ideal work of separation as a measure of junction stability. Finally, we perform a detailed analysis of the atomic and interplanar relaxations in each junction. Our results imply that the structural irregularities on the surface of the Al film have a significant contribution to lowering the tunnel barrier height, while interplanar relaxations in the Al film, away from the immediate interface do not have a notable impact on the tunnelling properties. On the other hand, up to 5-7 layers of Al2O3 may be involved in shaping the tunnel barriers. Interplanar relaxations of these layers depend on the geometry of the interface and may result in the net contraction by 13% relative to the corresponding thickness in the bulk oxide. This is a significant amount as the tunnelling probability depends exponentially on the barrier width.



قيم البحث

اقرأ أيضاً

Experiments have shown that the tunneling current in a Co/Al$_2$O$_3$ magnetic tunneling junction (MTJ) is positively spin polarized, opposite to what is intuitively expected from standard tunneling theory which gives the spin polarization as exclusi vely dependent on the density of states (DOS) at $E_F$ of the Co layers. Here we report theoretical results that give a positive tunneling spin polarization and tunneling magnetoresistance (TMR) that is in good agreement with experiments. From density functional theory (DFT) calculations, an Al-rich interface MTJ with atomic-level disorder is shown to have a positively polarized DOS near the interface. We also provide an atomic model calculation which gives insights into the source of the positive polarization. A layer and spin dependent effective mass model, using values extracted from the DFT results, is then used to calculate the tunneling current, which shows positive spin polarization. Finally, we calculate the TMR from the tunneling spin polarization which shows good agreement with experiments.
Thermoelectric effects in magnetic nanostructures and the so-called spin caloritronics are attracting much interest. Indeed it provides a new way to control and manipulate spin currents which are key elements of spin-based electronics. Here we report on giant magnetothermoelectric effect in Al2O3 magnetic tunnel junctions. The thermovoltage in this geometry can reach 1 mV. Moreover a magneto-thermovoltage effect could be measured with ratio similar to the tunnel magnetoresistance ratio. The Seebeck coefficient can then be tuned by changing the relative magnetization orientation of the two magnetic layers in the tunnel junction. Therefore our experiments extend the range of spintronic devices application to thermoelectricity and provide a crucial piece of information for understanding the physics of thermal spin transport.
The resonant tunneling model is the simplest model for describing electronic transport through nanoscale objects like individual molecules. A complete understanding includes not only charge transport but also thermal transport and their intricate int erplay. Key linear response observables are the electrical conductance G and the Seebeck coefficient S. Here we present experiments on unspecified resonant tunnel junctions and molecular junctions that uncover correlations between $G$ and $S$, in particular rigid boundaries for $S(G)$. We find that these correlations can be consistently understood by the single-level resonant tunneling model, with excellent match to experiments. In this framework, measuring $I(V)$ and $S$ for a given junction provides access to the full thermoelectric characterization of the electronic system. A remarkable result is that without targeted chemical design, molecular junctions can expose thermoelectric conversion efficiencies which are close to the Carnot limit. This insight allows to provide design rules for optimized thermoelectric efficiency.
Despite their ubiquity in nanoscale electronic devices, the physics of tunnel barriers has not been developed to the extent necessary for the engineering of devices in the few-electron regime. This problem is of urgent interest, as this is the precis e regime into which current, extreme-scale electronics fall. Here, we propose theoretically and validate experimentally a compact model for multi-electrode tunnel barriers, suitable for design-rules-based engineering of tunnel junctions in quantum devices. We perform transport spectroscopy at $T=4$ K, extracting effective barrier heights and widths for a wide range of biases, using an efficient Landauer-Buttiker tunneling model to perform the analysis. We find that the barrier height shows several regimes of voltage dependence, either linear or approximately exponential. The exponential dependence approximately correlates with the formation of an electron channel below an electrode. Effects on transport threshold, such as metal-insulator-transition and lateral confinement are non-negligible and included. We compare these results to semi-classical solutions of Poissons equation and find them to agree qualitatively. Finally, we characterize the sensitivity of a tunnel barrier that is raised or lowered without an electrode being directly above the barrier region.
Metal-Insulator-Metal tunnel junctions (MIMTJ) are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically-thin barriers demanded for enhanced quantum coherence. In this work, we employed in situ scanning tunneling spectroscopy (STS) along with molecular dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic layer deposition (ALD). We found that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically-thin Al2O3 tunnel barrier with a high quality M-I interface and a significantly enhanced barrier height compared to thermal AlOx. These properties, corroborated by fabricated Josephson Junctions, show that ALD Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next-generation of MIMTJs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا