ﻻ يوجد ملخص باللغة العربية
Saturns largest icy moon, Rhea, hosts a tenuous surface-sputtered exosphere composed primarily of molecular oxygen and carbon dioxide. In this Letter, we examine Cassini Plasma Spectrometer velocity space distributions near Rhea and confirm that Cassini detected nongyrotropic fluxes of outflowing CO$_2^+$ during both the R1 and R1.5 encounters. Accounting for this nongyrotropy, we show that these possess comparable alongtrack densities of $sim$2$times$10$^{-3}$ cm$^{-3}$. Negatively charged pickup ions, also detected during R1, are surprisingly shown as consistent with mass 26$pm$3 u which we suggest are carbon-based compounds, such as CN$^-$, C$_2$H$^-$, C$_2^-$, or HCO$^-$, sputtered from carbonaceous material on the moons surface. These negative ions are calculated to possess alongtrack densities of $sim$5$times$10$^{-4}$ cm$^{-3}$ and are suggested to derive from exogenic compounds, a finding consistent with the existence of Rheas dynamic CO$_2$ exosphere and surprisingly low O$_2$ sputtering yields. These pickup ions provide important context for understanding the exospheric and surface-ice composition of Rhea and of other icy moons which exhibit similar characteristics.
Non-thermal pickup ions (PUIs) are created in the solar wind (SW) by charge-exchange between SW ions (SWIs) and slow interstellar neutral atoms. It has long been theorized, but not directly observed, that PUIs should be preferentially heated at quasi
We provide the first direct observations of interstellar H+ and He+ pickup ions in the solar wind from 22 AU to 38 AU. We use the Vasyliunas and Siscoe model functional form to quantify the pickup ion distributions, and while the fit parameters gener
Saturns magnetospheric magnetic field, planetary radio emissions, plasma populations and magnetospheric structure are all known to be modulated at periods close to the assumed rotation period of the planetary interior. These oscillations are readily
In the vicinity of Europa, Galileo observed bursty Alfven-cyclotron wave power at the gyrofrequencies of a number of species including K$^+$, O$_2^+$, Na$^+$, and Cl$^+$, indicating the localised pickup of these species. Additional evidence for the p
The analysis of the wave content inside a perpendicular bow shock indicates that heating of ions is related to the Lower-Hybrid-Drift (LHD) instability, and heating of electrons to the Electron-Cyclotron-Drift (ECD) instability. Both processes repres