ﻻ يوجد ملخص باللغة العربية
The fundamental metallicity relation (FMR) is a postulated correlation between galaxy stellar mass, star formation rate (SFR), and gas-phase metallicity. At its core, this relation posits that offsets from the mass-metallicity relation (MZR) at a fixed stellar mass are correlated with galactic SFR. In this Letter, we quantify the timescale with which galactic SFRs and metallicities evolve using hydrodynamical simulations. We find that Illustris and IllustrisTNG predict that galaxy offsets from the star formation main sequence and MZR evolve over similar timescales, are often anti-correlated in their evolution, evolve with the halo dynamical time, and produce a pronounced FMR. In fact, for a FMR to exist, the metallicity and SFR must evolve in an anti-correlated sense which requires that they evolve with similar time variability. In contrast to Illustris and IllustrisTNG, we speculate that the SFR and metallicity evolution tracks may become decoupled in galaxy formation models dominated by globally-bursty SFR histories, which could weaken the FMR residual correlation strength. This opens the possibility of discriminating between bursty and non-bursty feedback models based on the strength and persistence of the FMR -- especially at high redshift.
The fundamental metallicity relation (FMR) states that galaxies of the same stellar mass but larger star formation rate (SFR) tend to have smaller gas-phase metallicity (<Zg>). It is thought to be fundamental because it naturally arises from the stoc
We study the relations between gas-phase metallicity ($Z$), local stellar mass surface density ($Sigma_*$), and the local star formation surface density ($Sigma_{rm SFR}$) in a sample of 1120 star-forming galaxies from the MaNGA survey. At fixed $Sig
We use $sim$83,000 star-forming galaxies at $0.04<z<0.3$ from the Sloan Digital Sky Survey to study the so-called fundamental metallicity relation (FMR) and report on the disappearance of its anti-correlation between metallicity and star formation ra
We present a new measurement of the gas-phase mass-metallicity relation (MZR), and its dependence on star formation rates (SFRs) at 1.3 < z < 2.3. Our sample comprises 1056 galaxies with a mean redshift of z = 1.9, identified from the Hubble Space Te
Using cosmological galaxy simulations from the MaGICC project, we study the evolution of the stellar masses, star formation rates and gas phase abundances of star forming galaxies. We derive the stellar masses and star formation rates using observati