ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward the first quantum simulation with quantum speedup

87   0   0.0 ( 0 )
 نشر من قبل Andrew M. Childs
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With quantum computers of significant size now on the horizon, we should understand how to best exploit their initially limited abilities. To this end, we aim to identify a practical problem that is beyond the reach of current classical computers, but that requires the fewest resources for a quantum computer. We consider quantum simulation of spin systems, which could be applied to understand condensed matter phenomena. We synthesize explicit circuits for three leading quantum simulation algorithms, employing diverse techniques to tighten error bounds and optimize circuit implementations. Quantum signal processing appears to be preferred among algorithms with rigorous performance guarantees, whereas higher-order product formulas prevail if empirical error estimates suffice. Our circuits are orders of magnitude smaller than those for the simplest classically-infeasible instances of factoring and quantum chemistry.



قيم البحث

اقرأ أيضاً

Perceptrons, which perform binary classification, are the fundamental building blocks of neural networks. Given a data set of size~$N$ and margin~$gamma$ (how well the given data are separated), the query complexity of the best-known quantum training algorithm scales as either $( icefrac{sqrt{N}}{gamma^2})log( icefrac1{gamma^2)}$ or $ icefrac{N}{sqrt{gamma}}$, which is achieved by a hybrid of classical and quantum search. In this paper, we improve the version space quantum training method for perceptrons such that the query complexity of our algorithm scales as $sqrt{ icefrac{N}{gamma}}$. This is achieved by constructing an oracle for the perceptrons using quantum counting of the number of data elements that are correctly classified. We show that query complexity to construct such an oracle has a quadratic improvement over classical methods. Once such an oracle is constructed, bounded-error quantum search can be used to search over the hyperplane instances. The optimality of our algorithm is proven by reducing the evaluation of a two-level AND-OR tree (for which the query complexity lower bound is known) to a multi-criterion search. Our quantum training algorithm can be generalized to train more complex machine learning models such as neural networks, which are built on a large number of perceptrons.
A recent breakthrough by Ambainis, Balodis, Iraids, Kokainis, Pr=usis and Vihrovs (SODA19) showed how to construct faster quantum algorithms for the Traveling Salesman Problem and a few other NP-hard problems by combining in a novel way quantum searc h with classical dynamic programming. In this paper, we show how to apply this approach to the minimum Steiner tree problem, a well-known NP-hard problem, and construct the first quantum algorithm that solves this problem faster than the best known classical algorithms. More precisely, the complexity of our quantum algorithm is $mathcal{O}(1.812^kpoly(n))$, where $n$ denotes the number of vertices in the graph and $k$ denotes the number of terminals. In comparison, the best known classical algorithm has complexity $mathcal{O}(2^kpoly(n))$.
We study the simulation of the topological phases in three subsequent dimensions with quantum walks. We are mainly focused on the completion of a table for the protocols of the quantum walk that could simulate different family of the topological phas es in one, two dimensions and take the first initiatives to build necessary protocols for three-dimensional cases. We also highlight the possible boundary states that can be observed for each protocol in different dimensions and extract the conditions for their emergences or absences. To further enrich the simulation of the topological phenomenas, we include step-dependent coins in the evolution operators of the quantum walks. Consequently, this leads to step-dependency of the simulated topological phenomenas and their properties which in turn introduce dynamicality as a feature to simulated topological phases and boundary states. This dynamicality provides the step-number of the quantum walk as a mean to control and engineer the number of topological phases and boundary states, their populations, types and even occurrences.
Quantum computers can sometimes exponentially outperform classical ones, but only for problems with sufficient structure. While it is well known that query problems with full permutation symmetry can have at most polynomial quantum speedup -- even fo r partial functions -- it is unclear how far this condition must be relaxed to enable exponential speedup. In particular, it is natural to ask whether exponential speedup is possible for (partial) graph properties, in which the input describes a graph and the output can only depend on its isomorphism class. We show that the answer to this question depends strongly on the input model. In the adjacency matrix model, we prove that the bounded-error randomized query complexity $R$ of any graph property $mathcal{P}$ has $R(mathcal{P}) = O(Q(mathcal{P})^{6})$, where $Q$ is the bounded-error quantum query complexity. This negatively resolves an open question of Montanaro and de Wolf in the adjacency matrix model. More generally, we prove $R(mathcal{P}) = O(Q(mathcal{P})^{3l})$ for any $l$-uniform hypergraph property $mathcal{P}$ in the adjacency matrix model. In direct contrast, in the adjacency list model for bounded-degree graphs, we exhibit a promise problem that shows an exponential separation between the randomized and quantum query complexities.
123 - Itay Hen 2018
In classical computing, analog approaches have sometimes appeared to be more powerful than they really are. This occurs when resources, particularly precision, are not appropriately taken into account. While the same should also hold for analog quant um computing, precision issues are often neglected from the analysis. In this work we present a classical analog algorithm for unstructured search that can be viewed as analogous to the quantum adiabatic unstructured search algorithm devised by Roland and Cerf [Phys. Rev. A 65, 042308 (2002)]. We show that similarly to its quantum counterpart, the classical construction may also provide a quadratic speedup over standard digital unstructured search. We discuss the meaning and the possible implications of this result in the context of adiabatic quantum computing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا