ﻻ يوجد ملخص باللغة العربية
Despite their potential to exceed the theoretical Shockley-Queisser limit, ferroelectric photovoltaics (FPVs) have performed inefficiently due to their extremely low photocurrents. Incorporating Bi2FeCrO6 (BFCO) as the light absorber in FPVs has recently led to impressively high and record photocurrents [Nechache et al. Nature Photon. 2015, 9, 61], reviving the FPV field. However, our understanding of this remarkable phenomenon is far from satisfactory. Here, we use first-principles calculations to determine that such excellent performance mainly lies in the efficient separation of electron-hole (e-h) pairs. We show that photoexcited electrons and holes in BFCO are spatially separated on the Fe and Cr sites, respectively. This separation is much more pronounced in disordered BFCO phases, which show exceptional PV responses. We further set out to design a strategy for next-generation FPVs, not limited to BFCO, by exploring 44 additional Bi-based double-perovskite oxides. We suggest 9 novel active-layer materials that can offer strong e-h separations and a desired band gap energy for application in FPVs. Our work indicates that charge separation is the most important issue to be addressed for FPVs to compete with conventional devices.
Ferroelectric materials are interesting candidates for future photovoltaic applications due to their potential to overcome the fundamental limits of conventional single bandgap semiconductor-based solar cells. Although a more efficient charge separat
We report investigations on the magnetotransport in LaSb, which exhibits extremely large magnetoresistance (XMR). Foremost, we demonstrate that the resistivity plateau can be explained without invoking topological protection. We then determine the Fe
In this work, we use density functional theory calculations to demonstrate how spontaneous electric polarizations can be induced textit{via} a hybrid improper ferroelectric mechanism in iodide perovskites, a family well-known to display solar-optimal
Ferroelectric Rashba semiconductors (FERSC), in which Rashba spin-splitting can be controlled and reversed by an electric field, have recently emerged as a new class of functional materials useful for spintronic applications. The development of concr
The quest for nonmagnetic Weyl semimetals with high tunability of phase has remained a demanding challenge. As the symmetry breaking control parameter, the ferroelectric order can be steered to turn on/off the Weyl semimetals phase, adjust the band s