ﻻ يوجد ملخص باللغة العربية
We contrast predictions for the high-redshift galaxy population and reionization history between cold dark matter (CDM) and an alternative self-interacting dark matter model based on the recently developed ETHOS framework that alleviates the small-scale CDM challenges within the Local Group. We perform the highest resolution hydrodynamical cosmological simulations (a 36~Mpc$^3$ volume with gas cell mass of $sim10^5mathrm{M}_{odot}$ and minimum gas softening of $sim180$~pc) within ETHOS to date -- plus a CDM counterpart -- to quantify the abundance of galaxies at high redshift and their impact on reionization. We find that ETHOS predicts galaxies with higher ultraviolet (UV) luminosities than their CDM counterparts and a faster build-up of the faint end of the UV luminosity function. These effects, however, make the optical depth to reionization less sensitive to the power spectrum cut-off: the ETHOS model differs from the CDM $tau$ value by only 10 per cent and is consistent with Planck limits if the effective escape fraction of UV photons is 0.1-0.5. We conclude that current observations of high-redshift luminosity functions cannot differentiate between ETHOS and CDM models, but deep JWST surveys of strongly-lensed, inherently faint galaxies have the potential to test non-CDM models that offer attractive solutions to CDMs Local Group problems.
We propose two effective parameters that fully characterise galactic-scale structure formation at high redshifts ($zgtrsim5$) for a variety of dark matter (DM) models that have a primordial cutoff in the matter power spectrum. Our description is with
A cutoff in the linear matter power spectrum at dwarf galaxy scales has been shown to affect the abundance, formation mechanism and age of dwarf haloes and their galaxies at high and low redshift. We use hydrodynamical simulations of galaxy formation
We present the first simulations within an effective theory of structure formation (ETHOS), which includes the effect of interactions between dark matter and dark radiation on the linear initial power spectrum and dark matter self-interactions during
We study the halo mass function and inner halo structure at high redshifts ($zgeq5$) for a suite of simulations within the structure formation ETHOS framework. Scenarios such as cold dark matter (CDM), thermal warm dark matter (WDM), and dark acousti
We present some preliminary results from a series of extremely large, high-resolution N-body simulations of the formation of early nonlinear structures. We find that the high-z halo mass function is inconsistent with the Sheth-Tormen mass function, w