ﻻ يوجد ملخص باللغة العربية
People are shifting from traditional news sources to online news at an incredibly fast rate. However, the technology behind online news consumption promotes content that confirms the users existing point of view. This phenomenon has led to polarization of opinions and intolerance towards opposing views. Thus, a key problem is to model information filter bubbles on social media and design methods to eliminate them. In this paper, we use a machine-learning approach to learn a liberal-conservative ideology space on Twitter, and show how we can use the learned latent space to tackle the filter bubble problem. We model the problem of learning the liberal-conservative ideology space of social media users and media sources as a constrained non-negative matrix-factorization problem. Our model incorporates the social-network structure and content-consumption information in a joint factorization problem with shared latent factors. We validate our model and solution on a real-world Twitter dataset consisting of controversial topics, and show that we are able to separate users by ideology with over 90% purity. When applied to media sources, our approach estimates ideology scores that are highly correlated (Pearson correlation 0.9) with ground-truth ideology scores. Finally, we demonstrate the utility of our model in real-world scenarios, by illustrating how the learned ideology latent space can be used to develop exploratory and interactive interfaces that can help users in diffusing their information filter bubble.
Community structures detection is one of the fundamental problems in complex network analysis towards understanding the topology structures of the network and the functions of it. Nonnegative matrix factorization (NMF) is a widely used method for com
This article analyses public debate on Twitter via network representations of retweets and replies. We argue that tweets observable on Twitter have both a direct and mediated effect on the perception of public opinion. Through the interplay of the tw
The Baum-Welsh algorithm together with its derivatives and variations has been the main technique for learning Hidden Markov Models (HMM) from observational data. We present an HMM learning algorithm based on the non-negative matrix factorization (NM
In the non-negative matrix factorization (NMF) problem, the input is an $mtimes n$ matrix $M$ with non-negative entries and the goal is to factorize it as $Mapprox AW$. The $mtimes k$ matrix $A$ and the $ktimes n$ matrix $W$ are both constrained to h
Community structures detection in signed network is very important for understanding not only the topology structures of signed networks, but also the functions of them, such as information diffusion, epidemic spreading, etc. In this paper, we develo