ﻻ يوجد ملخص باللغة العربية
We found that an intermediate velocity cloud (IVC) IVC 86-36 in HI 21 cm emission shows a head-tail distribution toward the Galactic plane with marked parallel filamentary streamers, which is extended over 40 degrees in the sky. The distance of IVC 86-36 is constrained to be less than ~3 kpc from absorption of a background star as determined from opticalspectroscopy. There is a bridge feature in velocity between the IVC and the local ISM with velocity separation of ~50 km s-1, which may indicate dynamical interaction of the IVC with the disk. If the interaction is correct, the distance estimate d of the IVC ranges from 200 pc to 3 kpc, and the mass of the IVC head is estimated to be 7X103(d/1kpc)2Msol. The IVC shares similar properties to the Smith cloud located at 12 kpc, including the head-tail distribution, streamers, and bridge feature, while the mass of the IVC is less than ~0.1 of the Smith cloud. A comparison between the Hi and the Planck/IRAS dust emission indicates that the dust emission of IVC 86-36 is not detectable in spite of its HI column density of 2X10^20 cm-2, indicating low metalicity of IVC 86-36 by a factor of ~< 0.2 as compared with the solar neighbor. We conclude that IVC 86-38 is an infalling cloud which likely originated in the low-metallicity environment of the Galactic halo or the Magellanic system.
We present a census of neutral gas in the Milky Way disk and halo down to limiting column densities of $N$(HI)$sim10^{14}$ cm$^{-2}$ using measurements of HI Lyman-series absorption from the Far Ultraviolet Spectroscopic Explorer (FUSE). Our results
Recent determinations of the radial distributions of mono-metallicity populations (MMPs, i.e., stars in narrow bins in [Fe/H] within wider [$alpha$/Fe] ranges) by the SDSS-III/APOGEE DR12 survey cast doubts on the classical thin - thick disk dichotom
Tracing the transition between the diffuse atomic interstellar medium (ISM) and cold, dense gas is crucial for deciphering the star formation cycle in galaxies. Here we present MACH, a new survey of cold neutral hydrogen (HI) absorption at $21rm,cm$
This paper examines the ultraviolet and X-ray photons generated by hot gas in the Galactic thick disk or halo in the Draco region of the northern hemisphere. Our analysis uses the intensities from four ions, C IV, O VI, O VII, and O VIII, sampling te
We present a survey of atomic hydrogen HI) emission in the direction of the Galactic Center conducted with the CSIRO Australia Telescope Compact Array (ATCA). The survey covers the area -5 deg < l < +5, -5 deg < b <+5 deg over the velocity range -309