ﻻ يوجد ملخص باللغة العربية
Based on MUSE integral-field data we present evidence for a radial variation at the low-mass end of the stellar initial-mass function (IMF) in the central regions of the giant early-type galaxy NGC4486 (M87). We used state-of-the-art stellar population models and the observed strength of various IMF-sensitive absorption-line features to solve for the best low-mass tapered bimodal form of the IMF, while accounting also for radial variations in stellar metallicity, the overall $alpha$-elements abundance, and the abundance of individual elements such as Ti, O, Na and Ca. Our analysis reveals a strong IMF gradient in M87, corresponding to an exceeding fraction of low-mass stars compared to the case of the Milky Way toward the center of M87 that drops to nearly Milky-way levels by 0.4 $R_e$. This IMF gradient is found to correlate well with both the radial profile for stellar metallicity and for $alpha$-elements abundance but not with stellar velocity dispersion. Such IMF variations correspond to over a factor two increase in stellar mass-to-light M/L ratio compared to the case of a Milky-way like IMF, consistent with other investigations into IMF gradients in early-type galaxies, including recent dynamical constraints on M/L radial variations in M87 by Oldham & Auger. In addition to constraining the IMF in M87 we also looked into the abundance of Sodium, which turned up to be super-Solar over the entire radial range of our MUSE observations and to exhibit a considerable negative gradient. These findings suggest an additional role of metallicity in boosting the Na-yields in the central, metal-rich regions of M87 during its early and brief star-formation history. Our work adds the case of M87 to the few objects that as of today have radial constraints on their IMF or [Na/Fe] abundance, while also illustrating the accuracy that MUSE could bring to this kind of investigations.
Using the Oxford Short Wavelength Integral Field specTrograph (SWIFT), we trace radial variations of initial mass function (IMF) sensitive absorption features of three galaxies in the Coma cluster. We obtain resolved spectroscopy of the central 5kpc
The observed stellar initial mass function (IMF) appears to vary, becoming bottom-heavy in the centres of the most massive, metal-rich early-type galaxies. It is still unclear what physical processes might cause this IMF variation. In this paper, we
We argue that an increased temperature in star-forming clouds alters the stellar initial mass function to be more bottom-light than in the Milky Way. At redshifts $z gtrsim 6$, heating from the cosmic microwave background radiation produces this effe
We determine the radial abundance distributions across the disks of fourteen irregular galaxies of the types Sm and Im (morphological T types T = 9 and T =10) as traced by their HII regions. The oxygen and nitrogen abundances in HII regions are estim
We have undertaken the largest systematic study of the high-mass stellar initial mass function (IMF) to date using the optical color-magnitude diagrams (CMDs) of 85 resolved, young (4 Myr < t < 25 Myr), intermediate mass star clusters (10^3-10^4 Msun