ترغب بنشر مسار تعليمي؟ اضغط هنا

Primordial Black Holes for the LIGO Events in the Axion-like Curvaton Model

51   0   0.0 ( 0 )
 نشر من قبل Kenta Ando
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revise primordial black hole (PBH) formation in the axion-like curvaton model and investigate whether PBHs formed in this model can be the origin of the gravtitational wave (GW) signals detected by the Advanced LIGO. In this model, small-scale curvature perturbations with large amplitude are generated, which is essential for PBH formation. On the other hand, large curvature perturbations also become a source of primordial GWs by their second-order effects. Severe constraints are imposed on such GWs by pulsar timing array (PTA) experiments. We also check the consistency of the model with these constraints. In this analysis, it is important to take into account the effect of non-Gaussianity, which is generated easily in the curvaton model. We see that, if there are non-Gaussianities, the fixed amount of PBHs can be produced with a smaller amplitude of the primordial power spectrum.



قيم البحث

اقرأ أيضاً

We discuss a possible connection between the recent NANOGrav results and the primordial black holes (PBHs) for the LIGO-Virgo events. In particular, we focus on the axion-like curvaton model, which provides a sizable amount of PBHs and GWs induced by scalar perturbations around the NANOGrav frequency range. The inevitable non-Gaussianity of this model suppresses the induced GWs associated with PBHs for the LIGO-Virgo events to be compatible with the NANOGrav results. We show that the axion-like curvaton model can account for PBHs for the LIGO-Virgo events and the NANOGrav results simultaneously.
We investigate a possibility of primordial black hole (PBH) formation with a hierarchical mass spectrum in multiple phases of inflation. As an example, we find that one can simultaneously realize a mass spectrum which has recently attracted a lot of attention: stellar-mass PBHs ($simmathcal{O}(10)M_odot$) as a possible source of binary black holes detected by LIGO/Virgo collaboration, asteroid-mass ($simmathcal{O}(10^{-12})M_odot$) as a main component of dark matter, and earth-mass ($simmathcal{O}(10^{-5})M_odot$) as a source of ultrashort-timescale events in Optical Gravitational Lensing Experiment microlensing data. The recent refined de Sitter swampland conjecture may support such a multi-phase inflationary scenario with hierarchical mass PBHs as a transition signal of each inflationary phase.
181 - Lei-Hua Liu , Wu-Long Xu 2021
In light of our previous work cite{Liu:2019xhn}, we investigate the possibility of formation for primordial black-hole during preheating period, in which we have implemented the instability of the Mathieu equation. For generating sufficient enough en hanced power spectrum, we choose some proper parameters belonging to the narrow resonance. To characterize the full power spectrum, the enhanced part of the power spectrum is depicted by the $delta$ function at some specific scales, which is highly relevant with the mass of inflaton due to the explicit coupling between the curvaton and inflaton. After the inflationary period (including the preheating period), there is only one condition satisfying with the COBE normalization upper limit. Thanks to the huge choices for this mass parameter, we can simulate the value of abundance of primordial black holes nearly covering all of the mass ranges, in which we have given three special cases. One case could account for the dark matter in some sense since the abundance of a primordial black hole is about $75%$. At late times, the relic of exponential potential could be approximated to a constant of the order of cosmological constant dubbed as a role of dark energy. Thus, our model could unify dark energy and dark matter from the perspective of phenomenology. Finally, it sheds new light for exploring Higgs physics.
LIGO-Virgo collaboration has found black holes as heavy as $M sim 30M_odot$ through the detections of the gravitational waves emitted during their mergers. Primordial black holes (PBHs) produced by inflation could be an origin of such events. While i t is tempting to presume that these PBHs constitute all Dark Matter (DM), there exists a number of constraints for PBHs with $mathcal{O} (10) M_odot$ which contradict with the idea of PBHs as all DM. Also, it is known that weakly interacting massive particle (WIMP) that is a common DM candidate is almost impossible to coexist with PBHs. These observations motivate us to pursue another candidate of DM. In this paper, we assume that the string axion solving the strong CP problem makes up all DM, and discuss the coexistence of string axion DM and inflationary PBHs for LIGO events.
We consider a cosmological scenario in which the very early Universe experienced a transient epoch of matter domination due to the formation of a large population of primordial black holes (PBHs) with masses $M lesssim 10^{9},textrm{g}$, that evapora te before Big Bang nucleosynthesis. In this context, Hawking radiation would be a non-thermal mechanism to produce a cosmic background of axion-like particles (ALPs). We assume the minimal scenario in which these ALPs couple only with photons. In the case of ultralight ALPs ($m_a lesssim 10^{-9},textrm{eV}$) the cosmic magnetic fields might trigger ALP-photon
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا