ترغب بنشر مسار تعليمي؟ اضغط هنا

Kondo-like phonon scattering in thermoelectric clathrates

213   0   0.0 ( 0 )
 نشر من قبل Silke Buehler-Paschen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Crystalline solids are generally known as excellent heat conductors, amorphous materials or glasses as thermal insulators. It has thus come as a surprise that certain crystal structures defy this paradigm. A prominent example are type-I clathrates and other materials with guest-host structures. They sustain low-energy Einstein-like modes in their phonon spectra, but are also prone to various types of disorder and phonon-electron scattering and thus the mechanism responsible for their ultralow thermal conductivities has remained elusive. While recent ab initio lattice dynamics simulations show that the Einstein-like modes enhance phonon-phonon Umklapp scattering, they reproduce experimental data only at low temperatures. Here we show that a new effect, an all phononic Kondo effect, can resolve this discrepancy. This is evidenced by our thermodynamic and transport measurements on various clathrate single crystal series and their comparison with ab initio simulations. Our new understanding devises design strategies to further suppress the thermal conductivity of clathrates and other related materials classes, with relevance for the field of thermoelectric waste heat recovery but also more generally for phononic applications. More fundamentally, it may trigger theoretical work on strong correlation effects in phonon systems.



قيم البحث

اقرأ أيضاً

Type-I clathrate compounds have attracted a great deal of interest in connection with the search for efficient thermoelectric materials. These compounds constitute networked cages consisting of nano-scale tetrakaidecahedrons (14 hedrons) and dodecahe drons (12 hedrons), in which the group 1 or 2 elements in the periodic table are encaged as the so-called rattling guest atom. It is remarkable that, though these compounds have crystalline cubic-structure, they exhibit glass-like phonon thermal conductivity over the whole temperature range depending on the states of rattling guest atoms in the tetrakaidecahedron. In addition, these compounds show unusual glass-like specific heats and THz-frequency phonon dynamics, providing a remarkable broad peak almost identical to those observed in topologically disordered amorphous materials or structural glasses, the so-called Boson peak. An efficient thermoelectric effect is realized in compounds showing these glass-like characteristics. This decade, a number of experimental works dealing with type-I clathrate compounds have been published. These are diffraction experiments, thermal and spectroscopic experiments in addition to those based on heat and electronic transport. These form the raw materials for this article based on advances this decade. The subject of this article involves interesting phenomena from the viewpoint of not only physics but also from the view point of the practical problem of elaborating efficient thermoelectric materials. This review presents a survey of a wide range of experimental investigations of type-I clathrate compounds, together with a review of theoretical interpretations of the peculiar thermal and dynamic properties observed in these materials.
102 - K. Han , N. Palina , S. W. Zeng 2016
The observation of magnetic interaction at the interface between nonmagnetic oxides has attracted much attention in recent years. In this report, we show that the Kondo-like scattering at the SrTiO3-based conducting interface is enhanced by increasin g the lattice mismatch and growth oxygen pressure PO2. For the 26-unit-cell LaAlO3/SrTiO3 (LAO/STO) interface with lattice mismatch being 3.0%, the Kondo-like scattering is observed when PO2 is beyond 1 mTorr. By contrast, when the lattice mismatch is reduced to 1.0% at the (La0.3Sr0.7)(Al0.65Ta0.35)O3/SrTiO3 (LSAT/STO) interface, the metallic state is always preserved up to PO2 of 100 mTorr. The data from Hall measurement and X-ray absorption near edge structure (XANES) spectroscopy reveal that the larger amount of localized Ti3+ ions are formed at the LAO/STO interface compared to LSAT/STO. Those localized Ti3+ ions with unpaired electrons can be spin-polarized to scatter mobile electrons, responsible for the Kondo-like scattering observed at the LAO/STO interface.
We study nonequilibrium thermoelectric transport properties of a correlated impurity connected to two leads for temperatures below the Kondo scale. At finite bias, for which a current flows across the leads, we investigate the differential response o f the current to a temperature gradient. In particular, we compare the influence of a bias voltage and of a finite temperature on this thermoelectric response. This is of interest from a fundamental point of view to better understand the two different decoherence mechanisms produced by a bias voltage and by temperature. Our results show that in this respect the thermoelectric response behaves differently from the electric conductance. In particular, while the latter displays a similar qualitative behavior as a function of voltage and temperature, both in theoretical and experimental investigations, qualitative differences occur in the case of the thermoelectric response. In order to understand this effect, we analyze the different contributions in connection to the behavior of the impurity spectral function versus temperature. Especially in the regime of strong interactions and large enough bias voltages we obtain a simple picture based on the asymmetric suppression or enhancement of the split Kondo peaks as a function of the temperature gradient. Besides the academic interest, these studies could additionally provide valuable information to assess the applicability of quantum dot devices as responsive nanoscale temperature sensors.
324 - Christoph Heil 2019
We report ab-initio calculations of the superconducting properties of two high-Tc sodalite-like clathrate yttrium hydrides, YH6 and YH10, within the fully anisotropic ME theory, including Coulomb corrections. For both compounds we find almost isotrop ic superconducting gaps, resulting from a uniform distribution of the electron-phonon coupling over phonon modes and electronic states of mixed Y and H character. The Coulomb screening is rather weak, resulting in a Morel-Anderson pseudopotential mu*= 0:11, at odds with claims of unusually large Tc in lanthanum hydrides. The corresponding critical temperatures at 300 GPa exceed room temperature (Tc = 290 K and 310 K for YH6 and YH10), in agreement with a previous isotropic-gap calculation. The different response of these two compounds to external pressure, along with a comparison to low-Tc superconducting YH3, may inspire strategies to improve the superconducting properties of this class of hydrides.
Understanding the physics of strongly correlated electronic systems has been a central issue in condensed matter physics for decades. In transition metal oxides, strong correlations characteristic of narrow $d$ bands is at the origin of such remarkab le properties as the Mott gap opening, enhanced effective mass, and anomalous vibronic coupling, to mention a few. SrVO$_3$, with V$^{4+}$ in a $3d^1$ electronic configuration is the simplest example of a 3D correlated metallic electronic system. Here, we focus on the observation of a (roughly) quadratic temperature dependence of the inverse electron mobility of this seemingly simple system, which is an intriguing property shared by other metallic oxides. The systematic analysis of electronic transport in SrVO$_3$ thin films discloses the limitations of the simplest picture of e-e correlations in a Fermi liquid; instead, we show that the quasi-2D topology of the Fermi surface and a strong electron-phonon coupling, contributing to dress carriers with a phonon cloud, play a pivotal role on the reported electron spectroscopic, optical, thermodynamic and transport data. The picture that emerges is not restricted to SrVO$_3$ but can be shared with other $3d$ and $4d$ metallic oxides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا