ترغب بنشر مسار تعليمي؟ اضغط هنا

Hard exclusive pion electroproduction at backward angles with CLAS

72   0   0.0 ( 0 )
 نشر من قبل Kijun Park
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the first measurement of cross sections for exclusive deeply virtual pion electroproduction off the proton, $e p to e^prime n pi^+$, above the resonance region at backward pion center-of-mass angles. The $varphi^*_{pi}$-dependent cross sections were measured, from which we extracted three combinations of structure functions of the proton. Our results are compatible with calculations based on nucleon-to-pion transition distribution amplitudes (TDAs) and shed new light on nucleon structure.



قيم البحث

اقرأ أيضاً

144 - I. Bedlinskiy 2014
Exclusive neutral-pion electroproduction ($epto e^prime p^prime pi^0$) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4sigma/dtdQ^2dx_Bdphi_pi$ and structure functions $sigma_T+epsilo nsigma_L, sigma_{TT}$ and $sigma_{LT}$ as functions of $t$ were obtained over a wide range of $Q^2$ and $x_B$. The data are compared with Regge and handbag theoretical calculations. Analyses in both frameworks find that a large dominance of transverse processes is necessary to explain the experimental results. For the Regge analysis it is found that the inclusion of vector meson rescattering processes is necessary to bring the magnitude of the calculated and measured structure functions into rough agreement. In the handbag framework, there are two independent calculations, both of which appear to roughly explain the magnitude of the structure functions in terms of transversity generalized parton distributions.
The cross section of the exclusive $eta$ electroproduction reaction $epto e^prime p^prime eta$ was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4sigma/dtdQ^2dx_Bdphi_eta$ and structure functions $sigma_U = sigma_T+epsilonsigma_L, sigma_{TT}$ and $sigma_{LT}$, as functions of $t$ were obtained over a wide range of $Q^2$ and $x_B$. The $eta$ structure functions are compared with those previously measured for $pi^0$ at the same kinematics. At low $t$, both $pi^0$ and $eta$ are described reasonably well by generalized parton distributions (GPDs) in which chiral-odd transversity GPDs are dominant. The $pi^0$ and $eta$ data, when taken together, can facilitate the flavor decomposition of the transversity GPDs.
60 - Victor I Mokeev 2019
Exclusive $pi^+pi^-p$ photo- and electroproduction data from CLAS have considerably extended the information on the spectrum and structure of nucleon resonances. The data from the $pi^+pi^-p$ and $Npi$ channels have provided results on the electrocou plings of most resonances in the mass region up to 1.8 GeV and at photon virtualities up to 5.0 GeV$^2$. The recent CLAS data on $pi^+pi^-p$ photoproduction have improved knowledge on the photocouplings of nucleon resonances in the mass range of 1.6 GeV $<$ $M_{N^*}$ $<$ 2.0 GeV and on their decays to the $pi Delta$ and $rho p$ final hadron states. For the first time, the electrocouplings of the $N(1440)1/2^+$ and $N(1520)3/2^-$ excited states have become available from $pi^+pi^-p$ data at 2.0 GeV$^2$ $<$ $Q^2$ $<$ 5.0 GeV$^2$. Analyses of the combined $pi^+pi^-p$ photo- and electroproduction data have revealed evidence for the candidate-state $N(1720)3/2^+$. The new results on the nucleon resonance spectrum, electroexcitation amplitudes from analysis of the CLAS $pi^+pi^-p$ photo- and electroproduction data, and their impact on the exploration of strong QCD are presented.
116 - Victor I. Mokeev 2018
Studies of the nucleon resonance electroexcitation amplitudes in a wide range of photon virtualities offer unique information on many facets of strong QCD behind the generation of all prominent excited nucleon states. Advances in the evaluation of re sonance electroexcitation amplitudes from the data measured with the CLAS detector and the future extension of these studies with the CLAS12 detector at Jefferson Lab are presented. For the first time, analyses of $pi^0p$, $pi^+n$, $eta p$, and $pi^+pi^-p$ electroproduction off proton channels have provided electroexcitation amplitudes of most resonances in the mass range up to 1.8 GeV and at photon virtualities $Q^2 < 5$~GeV$^2$.Studies of the resonance electroexcitation amplitudes revealed the $N^*$ structure as a complex interplay between the inner core of three dressed quarks and the external meson-baryon cloud. The successful description of the $Delta(1232)3/2^+$ and $N(1440)1/2^+$ electrocouplings achieved within the Dyson-Schwinger Equation approach under a traceable connection to the QCD Lagrangian and supported by the novel light front quark model demonstrated the relevance of dressed quarks with dynamically generated masses as an active structural component in baryons. Future experiments with the CLAS12 detector will offer insight into the structure of all prominent resonances at the highest photon virtualities, $Q^2 < 12$~GeV$^2$, ever achieved in exclusive reactions, thus addressing the most challenging problems of the Standard Model on the nature of hadron mass, quark-gluon confinement, and the emergence of nucleon resonance structures from QCD. A search for new states of hadronic matter, the so-called hybrid-baryons with glue as a structural component, will complete the long term efforts on the resonance spectrum exploration.
190 - W.B. Li , G.M. Huber , H.P. Blok 2019
Backward-angle meson electroproduction above the resonance region, which was previously ignored, is anticipated to offer unique access to the three quark plus sea component of the nucleon wave function. In this letter, we present the first complete s eparation of the four electromagnetic structure functions above the resonance region in exclusive omega electroproduction off the proton, e + p -> e + p + omega, at central Q^2 values of 1.60, 2.45 GeV^2 , at W = 2.21 GeV. The results of our pioneering -u ~ -u min study demonstrate the existence of a unanticipated backward-angle cross section peak and the feasibility of full L/T/LT/TT separations in this never explored kinematic territory. At Q^2 =2.45 GeV^2 , the observed dominance of sigma_T over sigma_L, is qualitatively consistent with the collinear QCD description in the near-backward regime, in which the scattering amplitude factorizes into a hard subprocess amplitude and baryon to meson transition distribution amplitudes (TDAs): universal non-perturbative objects only accessible through backward angle kinematics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا