Robust quantum state transfer via topological edge states in superconducting qubit chains


الملخص بالإنكليزية

Robust quantum state transfer (QST) is an indispensable ingredient in scalable quantum information processing. Here we present an experimentally feasible mechanism for realizing robust QST via topologically protected edge states in superconducting qubit chains. Using superconducting Xmon qubits with tunable couplings, we construct generalized Su-Schrieffer-Heeger models and analytically derive the wave functions of topological edge states. We find that such edge states can be employed as a quantum channel to realize robust QST between remote qubits. With a numerical simulation, we show that both single-qubit states and two-qubit entangled states can be robustly transferred in the presence of sizable imperfections in the qubit couplings. The transfer fidelity demonstrates a wide plateau at the value of unity in the imperfection magnitude. This approach is general and can be implemented in a variety of quantum computing platforms.

تحميل البحث