ﻻ يوجد ملخص باللغة العربية
Neural networks are usually not the tool of choice for nonparametric high-dimensional problems where the number of input features is much larger than the number of observations. Though neural networks can approximate complex multivariate functions, they generally require a large number of training observations to obtain reasonable fits, unless one can learn the appropriate network structure. In this manuscript, we show that neural networks can be applied successfully to high-dimensional settings if the true function falls in a low dimensional subspace, and proper regularization is used. We propose fitting a neural network with a sparse group lasso penalty on the first-layer input weights. This results in a neural net that only uses a small subset of the original features. In addition, we characterize the statistical convergence of the penalized empirical risk minimizer to the optimal neural network: we show that the excess risk of this penalized estimator only grows with the logarithm of the number of input features; and we show that the weights of irrelevant features converge to zero. Via simulation studies and data analyses, we show that these sparse-input neural networks outperform existing nonparametric high-dimensional estimation methods when the data has complex higher-order interactions.
Statistical inference in high dimensional settings has recently attracted enormous attention within the literature. However, most published work focuses on the parametric linear regression problem. This paper considers an important extension of this
High-dimensional, low sample-size (HDLSS) data problems have been a topic of immense importance for the last couple of decades. There is a vast literature that proposed a wide variety of approaches to deal with this situation, among which variable se
With the availability of high dimensional genetic biomarkers, it is of interest to identify heterogeneous effects of these predictors on patients survival, along with proper statistical inference. Censored quantile regression has emerged as a powerfu
We study a mean-field spike and slab variational Bayes (VB) approximation to Bayesian model selection priors in sparse high-dimensional linear regression. Under compatibility conditions on the design matrix, oracle inequalities are derived for the me