ﻻ يوجد ملخص باللغة العربية
We have compared the occurrence of 6.7-GHz and 12.2-GHz methanol masers with 22-GHz water masers and 6035-MHz excited-state OH masers in the 100 square degree region of the southern Galactic plane common to the Methanol Multibeam (MMB) and H2O southern Galactic Plane surveys (HOPS). We find the most populous star formation species to be 6.7-GHz methanol, followed by water, then 12.2-GHz and, finally, excited-state OH masers. We present association statistics, flux density (and luminosity where appropriate) and velocity range distributions across the largest, fully surveyed portion of the Galactic plane for four of the most common types of masers found in the vicinity of star formation regions. Comparison of the occurrence of the four maser types with far-infrared dust temperatures shows that sources exhibiting excited-state OH maser emission are warmer than sources showing any of the other three maser types. We further find that sources exhibiting both 6.7-GHz and 12.2-GHz methanol masers are warmer than sources exhibiting just 6.7-GHz methanol maser emission. These findings are consistent with previously made suggestions that both OH and 12.2-GHz methanol masers generally trace a later stage of star formation compared to other common maser types.
A new 7-beam 6-7 GHz receiver has been built to survey the Galaxy and the Magellanic Clouds for newly forming high-mass stars that are pinpointed by strong methanol maser emission at 6668 MHz. The receiver was jointly constructed by Jodrell Bank Obse
We present the results of the first complete unbaised survey of the Galactic Plane for 6035-MHz excited-state hydroxyl masers undertaken as part of the Methanol Multibeam Survey. These observations cover the Galactic longitude ranges $186^{circ}< l <
The Cygnus X complex is covered by the Global View of Star Formation in the Milky Way (GLOSTAR) survey, an unbiased radio-wavelength Galactic plane survey, in 4--8 GHz continuum radiation and several spectral lines. The GLOSTAR survey observed the 6.
The Central Molecular Zone (CMZ) spans the inner ~450 pc (3 degrees) of our Galaxy. This region is defined by its enhanced molecular emission and contains 5% of the entire Galaxys molecular gas mass. However, the number of detected star forming sites
We present the results of the first complete survey of the Large and Small Magellanic Clouds for 6668-MHz methanol and 6035-MHz excited-state hydroxyl masers. In addition to the survey, higher-sensitivity targeted searches towards known star-formatio