ﻻ يوجد ملخص باللغة العربية
Conventional crystalline magnets are characterized by symmetry breaking and normal modes of excitation called magnons with quantized angular momentum $hbar$. Neutron scattering correspondingly features extra magnetic Bragg diffraction at low temperatures and dispersive inelastic scattering associated with single magnon creation and annihilation. Exceptions are anticipated in so-called quantum spin liquids as exemplified by the one-dimensional spin-1/2 chain which has no magnetic order and where magnons accordingly fractionalize into spinons with angular momentum $hbar/2$. This is spectacularly revealed by a continuum of inelastic neutron scattering associated with two-spinon processes and the absence of magnetic Bragg diffraction. Here, we report evidence for these same key features of a quantum spin liquid in the three-dimensional Heisenberg antiferromagnet NaCaNi$_2$F$_7$. Through specific heat and neutron scattering measurements, Monte Carlo simulations, and analytic approximations to the equal time correlations, we show that NaCaNi$_2$F$_7$ is an almost ideal realization of the spin-1 antiferromagnetic Heisenberg model on a pyrochlore lattice with weak connectivity and frustrated interactions. Magnetic Bragg diffraction is absent and 90% of the spectral weight forms a continuum of magnetic scattering not dissimilar to that of the spin-1/2 chain but with low energy pinch points indicating NaCaNi$_2$F$_7$ is in a Coulomb phase. The residual entropy and diffuse elastic scattering points to an exotic state of matter driven by frustration, quantum fluctuations and weak exchange disorder.
The double perovskite ${rm La}_2{rm NiTiO}_6$ is identified as a three-dimensional $S=1$ quantum magnet. By means of Density Functional Theory we demonstrate that this material is a high-spin $d$-electron system deep in the Heisenberg limit and estab
Confinement is a process by which particles with fractional quantum numbers bind together to form quasiparticles with integer quantum numbers. The constituent particles are confined by an attractive interaction whose strength increases with increasin
When the energy eigenvalues of two coupled quantum states approach each other in a certain parameter space, their energy levels repel each other and level crossing is avoided. Such level repulsion, or avoided level crossing, is commonly used to descr
A low-field spin flop transition in the quasi one-dimensional antiferromagnet ba is exploited to study the polarization dependence of low-energy magnetic excitations. The measured longitudinal spectrum is best described as single broad continuum, wit
The magnetic properties of Na2CuP2O7 were investigated by means of 31P nuclear magnetic resonance (NMR), magnetic susceptibility, and heat capacity measurements. We report the 31P NMR shift, the spin-lattice 1/T1, and spin-spin 1/T2 relaxation-rate d