ﻻ يوجد ملخص باللغة العربية
An X-ray survey with the XMM-Newton telescope, XMM-XXL, has identified hundreds of galaxy groups and clusters in two 25 deg$^2$ fields. Combining spectroscopic and X-ray observations in one field, we determine how the kinetic energy of galaxies scales with hot gas temperature and also, by imposing prior constraints on the relative energies of galaxies and dark matter, infer a power-law scaling of total mass with temperature. Our goals are: i) to determine parameters of the scaling between galaxy velocity dispersion and X-ray temperature, $T_{rm 300kpc}$, for the halos hosting XXL-selected clusters, and; ii) to infer the log-mean scaling of total halo mass with temperature, $langle ln M_{200} , | , T, z rangle$. We apply an ensemble velocity likelihood to a sample of $> 1500$ spectroscopic redshifts within $132$ spectroscopically confirmed clusters with redshifts $z < 0.6$ to model, $langle ln sigma_{rm gal},|,T,zrangle$, where $sigma_{rm gal}$ is the velocity dispersion of XXL cluster member galaxies and $T$ is a 300 kpc aperture temperature. To infer total halo mass we use a precise virial relation for massive halos calibrated by N-body simulations along with a single degree of freedom summarizing galaxy velocity bias with respect to dark matter. For the XXL-N cluster sample, we find $sigma_{rm gal} propto T^{0.63pm0.05}$, a slope significantly steeper than the self-similar expectation of $0.5$. Assuming scale-independent galaxy velocity bias, we infer a mean logarithmic mass at a given X-ray temperature and redshift, $langleln (E(z) M_{200}/10^{14},{rm M}_{odot})|T,zrangle=pi+alpha ln(T/T_p )+betaln (E(z)/E(z_p) )$ using pivot values ${rm k}T_{p}=2.2,{rm keV}$ and $z_p=0.25$, with normalization $pi=0.45pm0.24$ and slope $alpha=1.89pm0.15$. We obtain only weak constraints on redshift evolution, $beta=-1.29pm1.14$.
We present a catalogue containing the redshifts of 3,660 X-ray selected targets in the XXL southern field. The redshifts were obtained with the AAOmega spectrograph and 2dF fibre positioner on the Anglo-Australian Telescope. The catalogue contains 1,
The main goal of this study is to investigate the LF of a sample of 142 X-ray selected clusters, with spectroscopic redshift confirmation and a well defined selection function, spanning a wide redshift and mass range, and to test the LF dependence on
In the currently debated context of using clusters of galaxies as cosmological probes, the need for well-defined cluster samples is critical. The XXL Survey has been specifically designed to provide a well characterised sample of some 500 X-ray detec
Context. Distant galaxy clusters provide an effective laboratory in which to study galaxy evolution in dense environments and at early cosmic times. Aims. We aim to identify distant galaxy clusters as extended X-ray sources coincident with overdensit
Context. The XMM-XXL survey uses observations from XMM-Newton to detect clusters of galaxies over a wide range in mass and redshift. The moderate PSF of XMM-Newton means that point sources within or projected onto a cluster may not be separated from