In this paper we provide a negative answer to a question of Farb about the relation between the algebraic degree of the stretch factor of a pseudo-Anosov homeomorphism and the genus of the surface on which it is defined.
By using double branched covers, we prove that there is a 1-1 correspondence between the set of knotoids in the 2-sphere, up to orientation reversion and rotation, and knots with a strong inversion, up to conjugacy. This correspondence allows us to s
tudy knotoids through tools and invariants coming from knot theory. In particular, concepts from geometrisation generalise to knotoids, allowing us to characterise invertibility and other properties in the hyperbolic case. Moreover, with our construction we are able to detect both the trivial knotoid in the 2-sphere and the trivial planar knotoid.
We construct compactifications of Riemannian locally symmetric spaces arising as quotients by Anosov representations. These compactifications are modeled on generalized Satake compactifications and, in certain cases, on maximal Satake compactificatio
ns. We deduce that these Riemannian locally symmetric spaces are topologically tame, i.e. homeomorphic to the interior of a compact manifold with boundary. We also construct domains of discontinuity (not necessarily with a compact quotient) in a much more general setting.
We investigate the structure of the characteristic polynomial det(xI-T) of a transition matrix T that is associated to a train track representative of a pseudo-Anosov map [F] acting on a surface. As a result we obtain three new polynomial invariants
of [F], one of them being the product of the other two, and all three being divisors of det(xI-T). The degrees of the new polynomials are invariants of [F ] and we give simple formulas for computing them by a counting argument from an invariant train track. We give examples of genus 2 pseudo-Anosov maps having the same dilatation, and use our invariants to distinguish them.
We show that any 4-manifold admitting a $(g;k_1,k_2,0)$-trisection is an irregular 3-fold cover of the 4-sphere whose branching set is a surface in $S^4$, smoothly embedded except for one singular point which is the cone on a link. A 4-manifold admit
s such a trisection if and only if it has a handle decomposition with no 1-handles; it is conjectured that all simply-connected 4-manifolds have this property.