ترغب بنشر مسار تعليمي؟ اضغط هنا

A muon source based on plasma accelerators

42   0   0.0 ( 0 )
 نشر من قبل Illya Drebot
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The conceptual design of a compact source of GeV-class muons is presented, based on a plasma based electron-gamma collider. Evaluations of muon flux, spectra and brilliance are presented, carried out with ad-hoc montecarlo simulations of the electron-gamma collisions. These are analyzed in the context of a large spread of the invariant mass in the e-gamma interaction, due to the typical characteristics of plasma self-injected GeV electron beams, carrying large bunch charges with huge energy spread. The availability of a compact point-like muon source, triggerable at nsec level, may open a completely new scenario in the muon radiography application field.



قيم البحث

اقرأ أيضاً

140 - M. R. Islam , G. Xia , Y. Li 2017
Plasma-based accelerators have achieved tremendous progress in the past few decades, thanks to the advances of high power lasers and the availability of high-energy and relativistic particle beams. However, the electrons (or positrons) accelerated in the plasma wakefields are subject to radiation losses, which generally suppress the final energy gains of the beams. In this paper, radiation reaction in plasma-based high-energy accelerators is investigated using test particle approach. Energy-frontier TeV colliders based on a multiple stage laser-driven plasma wakefield accelerator and a single-staged proton-driven plasma wakefield accelerator are studied in detail. The results show that the higher axial and transverse field gradients seen by an off-axis injected witness beam result in a stronger damping force on the accelerated particles. Proton-driven plasma wakefield accelerated electrons are shown to lose less energy compared to those accelerated in a multi-staged laser-driven plasma wakefield accelerator.
381 - J. Faure 2017
Plasma injection schemes are crucial for producing high-quality electron beams in laser-plasma accelerators. This article introduces the general concepts of plasma injection. First, a Hamiltonian model for particle trapping and acceleration in plasma waves is introduced; ionization injection and colliding-pulse injection are described in the framework of this Hamiltonian model. We then proceed to consider injection in plasma density gradients.
58 - D. Neuffer 2017
An ultimate high intensity proton source for neutrino factories and/or muon colliders was projected to be a ~4 MW multi-GeV proton source providing short, intense proton pulses at ~15 Hz. The JPARC ~1 MW accelerators provide beam at parameters that i n many respects overlap these goals. Proton pulses from the JPARC Main Ring can readily meet the pulsed intensity goals. We explore these parameters, describing the overlap and consider extensions that may take a JPARC-like facility toward this ultimate source. JPARC itself could serve as a stage 1 source for such a facility.
204 - X. L. Xu 2013
The evolution of beam phase space in ionization-induced injection into plasma wakefields is studied using theory and particle-in-cell (PIC) simulations. The injection process causes special longitudinal and transverse phase mixing leading initially t o a rapid emittance growth followed by oscillation, decay, and eventual slow growth to saturation. An analytic theory for this evolution is presented that includes the effects of injection distance (time), acceleration distance, wakefield structure, and nonlinear space charge forces. Formulas for the emittance in the low and high space charge regimes are presented. The theory is verified through PIC simulations and a good agreement is obtained. This work shows how ultra-low emittance beams can be produced using ionization-induced injection.
The extreme electromagnetic fields sustained by plasma-based accelerators allow for energy gain rates above 100 GeV/m but are also an inherent source of correlated energy spread. This severely limits the usability of these devices. Here we propose a novel compact concept which compensates the induced energy correlation by combining plasma accelerating stages with a magnetic chicane. Particle-in-cell and tracking simulations of a particular 1.5 m-long setup with two plasma stages show that 5.5 GeV bunches with a final relative energy spread of $1.2times10^{-3}$ (total) and $5.5times10^{-4}$ (slice) could be achieved while preserving sub-micron emittance. This at least one order of magnitude below current state-of-the-art and paves the way towards applications such as Free-Electron Lasers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا