ﻻ يوجد ملخص باللغة العربية
We present a model for the radio evolution of supernova remnants (SNRs) obtained by using three-dimensional (3D) hydrodynamic simulations, coupled with nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. We model the radio evolution of SNRs on a global level, by performing simulations for wide range of the relevant physical parameters, such as the ambient density, the supernova (SN) explosion energy, the acceleration efficiency and the magnetic field amplification (MFA) efficiency. We attribute the observed spread of radio surface brightnesses for corresponding SNR diameters to the spread of these parameters. In addition to our simulations of type Ia SNRs, we also considered SNR radio evolution in denser, nonuniform circumstellar environment, modified by the progenitor star wind. These simulations start with the mass of the ejecta substantially higher than in the case of a type Ia SN and presumably lower shock speed. The magnetic field is understandably seen as very important for the radio evolution of SNRs. In terms of MFA, we include both resonant and non-resonant modes in our large scale simulations, by implementing models obtained from first-principles, particle-in-cell (PIC) simulations and non-linear magnetohydrodynamical (MHD) simulations. We test the quality and reliability of our models on a sample consisting of Galactic and extragalactic SNRs. Our simulations give $Sigma-D$ slopes between -4 and -6 for the full Sedov regime. Recent empirical slopes obtained for the Galactic samples are around -5, while for the extragalactic samples are around -4.
Supernova remnants are believed to be the major contributors to Galactic cosmic rays. In this paper, we explore how the non-thermal emission from young remnants can be used to probe the production of energetic particles at the shock (both protons and
Supernova remnants (SNRs) are believed to be the major contributors to Galactic cosmic rays. The detection of non-thermal emission from SNRs demonstrates the presence of energetic particles, but direct signatures of protons and other ions remain elus
According to the most popular model for the origin of cosmic rays (CRs), supernova remnants (SNRs) are the site where CRs are accelerated. Observations across the electromagnetic spectrum support this picture through the detection of non-thermal emis
Within our Galaxy, supernova remnants are believed to be the major sources of cosmic rays up to the knee. However important questions remain regarding the share of the hadronic and leptonic components, and the fraction of the supernova energy channel
Plerionic supernova remnants exhibit radio emission with remarkably flat spectral indices ranging from $alpha=0.0$ to $alpha=-0.3$. The origin of very hard particle energy distributions still awaits an explanation, since shock waves generate particle