ترغب بنشر مسار تعليمي؟ اضغط هنا

Hindsight policy gradients

122   0   0.0 ( 0 )
 نشر من قبل Paulo Rauber
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A reinforcement learning agent that needs to pursue different goals across episodes requires a goal-conditional policy. In addition to their potential to generalize desirable behavior to unseen goals, such policies may also enable higher-level planning based on subgoals. In sparse-reward environments, the capacity to exploit information about the degree to which an arbitrary goal has been achieved while another goal was intended appears crucial to enable sample efficient learning. However, reinforcement learning agents have only recently been endowed with such capacity for hindsight. In this paper, we demonstrate how hindsight can be introduced to policy gradient methods, generalizing this idea to a broad class of successful algorithms. Our experiments on a diverse selection of sparse-reward environments show that hindsight leads to a remarkable increase in sample efficiency.



قيم البحث

اقرأ أيضاً

Reinforcement Learning(RL) with sparse rewards is a major challenge. We propose emph{Hindsight Trust Region Policy Optimization}(HTRPO), a new RL algorithm that extends the highly successful TRPO algorithm with emph{hindsight} to tackle the challenge of sparse rewards. Hindsight refers to the algorithms ability to learn from information across goals, including ones not intended for the current task. HTRPO leverages two main ideas. It introduces QKL, a quadratic approximation to the KL divergence constraint on the trust region, leading to reduced variance in KL divergence estimation and improved stability in policy update. It also presents Hindsight Goal Filtering(HGF) to select conductive hindsight goals. In experiments, we evaluate HTRPO in various sparse reward tasks, including simple benchmarks, image-based Atari games, and simulated robot control. Ablation studies indicate that QKL and HGF contribute greatly to learning stability and high performance. Comparison results show that in all tasks, HTRPO consistently outperforms both TRPO and HPG, a state-of-the-art algorithm for RL with sparse rewards.
Dealing with sparse rewards is one of the biggest challenges in Reinforcement Learning (RL). We present a novel technique called Hindsight Experience Replay which allows sample-efficient learning from rewards which are sparse and binary and therefore avoid the need for complicated reward engineering. It can be combined with an arbitrary off-policy RL algorithm and may be seen as a form of implicit curriculum. We demonstrate our approach on the task of manipulating objects with a robotic arm. In particular, we run experiments on three different tasks: pushing, sliding, and pick-and-place, in each case using only binary rewards indicating whether or not the task is completed. Our ablation studies show that Hindsight Experience Replay is a crucial ingredient which makes training possible in these challenging environments. We show that our policies trained on a physics simulation can be deployed on a physical robot and successfully complete the task.
We propose a new way of deriving policy gradient updates for reinforcement learning. Our technique, based on Fourier analysis, recasts integrals that arise with expected policy gradients as convolutions and turns them into multiplications. The obtain ed analytical solutions allow us to capture the low variance benefits of EPG in a broad range of settings. For the critic, we treat trigonometric and radial basis functions, two function families with the universal approximation property. The choice of policy can be almost arbitrary, including mixtures or hybrid continuous-discrete probability distributions. Moreover, we derive a general family of sample-based estimators for stochastic policy gradients, which unifies existing results on sample-based approximation. We believe that this technique has the potential to shape the next generation of policy gradient approaches, powered by analytical results.
We introduce Hindsight Off-policy Options (HO2), a data-efficient option learning algorithm. Given any trajectory, HO2 infers likely option choices and backpropagates through the dynamic programming inference procedure to robustly train all policy co mponents off-policy and end-to-end. The approach outperforms existing option learning methods on common benchmarks. To better understand the option framework and disentangle benefits from both temporal and action abstraction, we evaluate ablations with flat policies and mixture policies with comparable optimization. The results highlight the importance of both types of abstraction as well as off-policy training and trust-region constraints, particularly in challenging, simulated 3D robot manipulation tasks from raw pixel inputs. Finally, we intuitively adapt the inference step to investigate the effect of increased temporal abstraction on training with pre-trained options and from scratch.
Multi-task reinforcement learning (RL) aims to simultaneously learn policies for solving many tasks. Several prior works have found that relabeling past experience with different reward functions can improve sample efficiency. Relabeling methods typi cally ask: if, in hindsight, we assume that our experience was optimal for some task, for what task was it optimal? In this paper, we show that hindsight relabeling is inverse RL, an observation that suggests that we can use inverse RL in tandem for RL algorithms to efficiently solve many tasks. We use this idea to generalize goal-relabeling techniques from prior work to arbitrary classes of tasks. Our experiments confirm that relabeling data using inverse RL accelerates learning in general multi-task settings, including goal-reaching, domains with discrete sets of rewards, and those with linear reward functions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا