ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase diagrams and multistep condensations of spin-1 bosonic gases in optical lattices

70   0   0.0 ( 0 )
 نشر من قبل Yongqiang Li
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by recent experimental processes, we systemically investigate strongly correlated spin-1 ultracold bosons trapped in a three-dimensional optical lattice in the presence of an external magnetic field. Based on a recently developed bosonic dynamical mean-field theory (BDMFT), we map out complete phase diagrams of the system for both antiferromagnetic and ferromagnetic interactions, where various phases are found as a result of the interplay of spin-dependent interaction and quadratic Zeeman energy. For antiferromagnetic interactions, the system demonstrates competing magnetic orders, including nematic, spin-singlet and ferromagnetic insulating phase, depending on longitudinal magnetization, whereas, for ferromagnetic case, a ferromagnetic-to-nematic-insulating phase transition is observed for small quadratic Zeeman energy, and the insulating phase demonstrates the nematic order for large Zeeman energy. Interestingly, at low magnetic field and finite temperature, we find an abnormal multi-step condensation of the strongly correlated superfluid, i.e. the critical condensing temperature of the $m_F=-1$ component with antiferromagnetic interactions demonstrates an increase with longitudinal magnetization, while, for ferromagnetic case, the Zeeman component $m_F = 0$ demonstrates a local minimum for the critical condensing temperature, in contrast to weakly interacting cases.



قيم البحث

اقرأ أيضاً

Motivated by recent realizations of spin-1 NaRb mixtures in the experiments, here we investigate heteronuclear magnetism in the Mott-insulating regime. Different from the identical mixtures where the boson (fermion) statistics only admits even (odd) parity states from angular momentum composition, for heteronuclear atoms in principle all angular momentum states are allowed, which can give rise to new magnetic phases. Various magnetic phases can be developed over these degenerate spaces, however, the concrete symmetry breaking phases depend not only on the degree of degeneracy, but also the competitions from many-body interactions. We unveil these rich phases using the bosonic dynamical mean-field theory approach. These phases are characterized by various orders, including spontaneous magnetization order, spin magnitude order, singlet pairing order and nematic order, which may coexist, especially in the regime with odd parity. Finally we address the possible parameter regimes for observing these spin-ordered Mott phases.
We calculate the density profiles of a trapped spin-imbalanced Fermi gas with attractive interactions in a one-dimensional optical lattice, using both the local density approximation (LDA) and density matrix renormalization group (DMRG) simulations. Based on the exact equation of state obtained by Bethe ansatz, LDA predicts that the gas phase-separates into shells with a partially polarized core and fully paired wings, where the latter occurs below a critical spin polarization. This behavior is also seen in numerically exact DMRG calculations at sufficiently large particle numbers. Unlike the continuum case, we show that the critical polarization is a non monotonic function of the interaction strength and vanishes in the limit of large interactions.
136 - T. Nakafuji , I. Ichinose 2017
Motivated by the recent experimental realization of the Haldane model by ultracold fermions in an optical lattice, we investigate phase diagrams of the hard-core Bose-Hubbard model on a honeycomb lattice. This model is closely related with a spin-1/2 antiferromagnetic (AF) quantum spin model. Nearest-neighbor (NN) hopping amplitude is positive and it prefers an AF configurations of phases of Bose-Einstein condensates. On the other hand, an amplitude of the next-NN hopping depends on an angle variable as in the Haldane model. Phase diagrams are obtained by means of an extended path-integral Monte-Carlo simulations. Besides the AF state, a 120$^o$-order state, there appear other phases including a Bose metal in which no long-range orders exist.
This tutorial is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules that interact via dipolar forces, and that are cooled below the quantum degen eracy temperature, typically in the nK range. When such a degenerate quantum gas is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur. These systems realize then extended Hubbard-type models, and can be brought to a strongly correlated regime. The physical properties of such gases, dominated by the long-range, anisotropic dipole-dipole interactions, are discussed using the mean-field approximations, and exact Quantum Monte Carlo techniques (the Worm algorithm).
Quantum antiferromagnets with geometrical frustration exhibit rich many-body physics but are hard to simulate by means of classical computers. Although quantum-simulation studies for analyzing such systems are thus desirable, they are still limited t o high temperature regions, where interesting quantum effects are smeared out. Here, we propose a feasible protocol to perform analog quantum simulation of frustrated antiferromagnetism with strong quantum fluctuations by using ultracold Bose gases in optical lattices at negative absolute temperatures. Specifically, we show from numerical simulations that the time evolution of a negative-temperature state subjected to a slow sweep of the hopping energy simulates quantum phase transitions of a frustrated Bose-Hubbard model with sign-inverted hoppings. Moreover, we quantitatively predict the phase boundary between the frustrated superfluid and Mott-insulator phases for triangular lattices with hopping anisotropy, which serves as a benchmark for quantum simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا