ﻻ يوجد ملخص باللغة العربية
We consider the problem of estimating a large rank-one tensor ${boldsymbol u}^{otimes k}in({mathbb R}^{n})^{otimes k}$, $kge 3$ in Gaussian noise. Earlier work characterized a critical signal-to-noise ratio $lambda_{Bayes}= O(1)$ above which an ideal estimator achieves strictly positive correlation with the unknown vector of interest. Remarkably no polynomial-time algorithm is known that achieved this goal unless $lambdage C n^{(k-2)/4}$ and even powerful semidefinite programming relaxations appear to fail for $1ll lambdall n^{(k-2)/4}$. In order to elucidate this behavior, we consider the maximum likelihood estimator, which requires maximizing a degree-$k$ homogeneous polynomial over the unit sphere in $n$ dimensions. We compute the expected number of critical points and local maxima of this objective function and show that it is exponential in the dimensions $n$, and give exact formulas for the exponential growth rate. We show that (for $lambda$ larger than a constant) critical points are either very close to the unknown vector ${boldsymbol u}$, or are confined in a band of width $Theta(lambda^{-1/(k-1)})$ around the maximum circle that is orthogonal to ${boldsymbol u}$. For local maxima, this band shrinks to be of size $Theta(lambda^{-1/(k-2)})$. These `uninformative local maxima are likely to cause the failure of optimization algorithms.
In this paper, we study the asymptotic behavior of the extreme eigenvalues and eigenvectors of the spiked covariance matrices, in the supercritical regime. Specifically, we derive the joint distribution of the extreme eigenvalues and the generalized
Using a low-dimensional parametrization of signals is a generic and powerful way to enhance performance in signal processing and statistical inference. A very popular and widely explored type of dimensionality reduction is sparsity; another type is g
In this paper, we study the asymptotic normality of the conditional maximum likelihood (ML) estimators for the truncated regression model and the Tobit model. We show that under the general setting assumed in his book, the conjectures made by Hayashi
We study the fundamental limits of detecting the presence of an additive rank-one perturbation, or spike, to a Wigner matrix. When the spike comes from a prior that is i.i.d. across coordinates, we prove that the log-likelihood ratio of the spiked mo
In this paper, we study the power iteration algorithm for the spiked tensor model, as introduced in [44]. We give necessary and sufficient conditions for the convergence of the power iteration algorithm. When the power iteration algorithm converges,