ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak convergence of Galerkin approximations for fractional elliptic stochastic PDEs with spatial white noise

242   0   0.0 ( 0 )
 نشر من قبل Kristin Kirchner
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The numerical approximation of the solution to a stochastic partial differential equation with additive spatial white noise on a bounded domain is considered. The differential operator is assumed to be a fractional power of an integer order elliptic differential operator. The solution is approximated by means of a finite element discretization in space and a quadrature approximation of an integral representation of the fractional inverse from the Dunford-Taylor calculus. For the resulting approximation, a concise analysis of the weak error is performed. Specifically, for the class of twice continuously Frechet differentiable functionals with second derivatives of polynomial growth, an explicit rate of weak convergence is derived, and it is shown that the component of the convergence rate stemming from the stochasticity is doubled compared to the corresponding strong rate. Numerical experiments for different functionals validate the theoretical results.



قيم البحث

اقرأ أيضاً

The numerical approximation of solutions to stochastic partial differential equations with additive spatial white noise on bounded domains in $mathbb{R}^d$ is considered. The differential operator is given by the fractional power $L^beta$, $betain(0, 1)$, of an integer order elliptic differential operator $L$ and is therefore non-local. Its inverse $L^{-beta}$ is represented by a Bochner integral from the Dunford-Taylor functional calculus. By applying a quadrature formula to this integral representation, the inverse fractional power operator $L^{-beta}$ is approximated by a weighted sum of non-fractional resolvents $(I + t_j^2 L)^{-1}$ at certain quadrature nodes $t_j>0$. The resolvents are then discretized in space by a standard finite element method. This approach is combined with an approximation of the white noise, which is based only on the mass matrix of the finite element discretization. In this way, an efficient numerical algorithm for computing samples of the approximate solution is obtained. For the resulting approximation, the strong mean-square error is analyzed and an explicit rate of convergence is derived. Numerical experiments for $L=kappa^2-Delta$, $kappa > 0$, with homogeneous Dirichlet boundary conditions on the unit cube $(0,1)^d$ in $d=1,2,3$ spatial dimensions for varying $betain(0,1)$ attest the theoretical results.
We propose and analyze novel adaptive algorithms for the numerical solution of elliptic partial differential equations with parametric uncertainty. Four different marking strategies are employed for refinement of stochastic Galerkin finite element ap proximations. The algorithms are driven by the energy error reduction estimates derived from two-level a posteriori error indicators for spatial approximations and hierarchical a posteriori error indicators for parametric approximations. The focus of this work is on the mathematical foundation of the adaptive algorithms in the sense of rigorous convergence analysis. In particular, we prove that the proposed algorithms drive the underlying energy error estimates to zero.
123 - Daniel Conus , Arnulf Jentzen , 2014
Strong convergence rates for (temporal, spatial, and noise) numerical approximations of semilinear stochastic evolution equations (SEEs) with smooth and regular nonlinearities are well understood in the scientific literature. Weak convergence rates f or numerical approximations of such SEEs have been investigated since about 11 years and are far away from being well understood: roughly speaking, no essentially sharp weak convergence rates are known for parabolic SEEs with nonlinear diffusion coefficient functions; see Remark 2.3 in [A. Debussche, Weak approximation of stochastic partial differential equations: the nonlinear case, Math. Comp. 80 (2011), no. 273, 89-117] for details. In this article we solve the weak convergence problem emerged from Debussches article in the case of spectral Galerkin approximations and establish essentially sharp weak convergence rates for spatial spectral Galerkin approximations of semilinear SEEs with nonlinear diffusion coefficient functions. Our solution to the weak convergence problem does not use Malliavin calculus. Rather, key ingredients in our solution to the weak convergence problem emerged from Debussches article are the use of appropriately modifie
Shot noise processes have been extensively studied due to their mathematical properties and their relevance in several applications. Here, we consider nonnegative shot noise processes and prove their weak convergence to Levy-driven Ornstein-Uhlenbeck (OU), whose features depend on the underlying jump distributions. Among others, we obtain the OU-Gamma and OU-Inverse Gaussian processes, having gamma and inverse gaussian processes as background Levy processes, respectively. Then, we derive the necessary conditions guaranteeing the diffusion limit to a Gaussian OU process, show that they are not met unless allowing for negative jumps happening with probability going to zero, and quantify the error occurred when replacing the shot noise with the OU process and the non-Gaussian OU processes. The results offer a new class of models to be used instead of the commonly applied Gaussian OU processes to approximate synaptic input currents, membrane voltages or conductances modelled by shot noise in single neuron modelling.
For semilinear stochastic evolution equations whose coefficients are more general than the classical global Lipschitz, we present results on the strong convergence rates of numerical discretizations. The proof of them provides a new approach to stron g convergence analysis of numerical discretizations for a large family of second order parabolic stochastic partial differential equations driven by space-time white noises. We apply these results to the stochastic advection-diffusion-reaction equation with a gradient term and multiplicative white noise, and show that the strong convergence rate of a fully discrete scheme constructed by spectral Galerkin approximation and explicit exponential integrator is exactly $frac12$ in space and $frac14$ in time. Compared with the optimal regularity of the mild solution, it indicates that the spetral Galerkin approximation is superconvergent and the convergence rate of the exponential integrator is optimal. Numerical experiments support our theoretical analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا