ﻻ يوجد ملخص باللغة العربية
Photonic Neural Network implementations have been gaining considerable attention as a potentially disruptive future technology. Demonstrating learning in large scale neural networks is essential to establish photonic machine learning substrates as viable information processing systems. Realizing photonic Neural Networks with numerous nonlinear nodes in a fully parallel and efficient learning hardware was lacking so far. We demonstrate a network of up to 2500 diffractively coupled photonic nodes, forming a large scale Recurrent Neural Network. Using a Digital Micro Mirror Device, we realize reinforcement learning. Our scheme is fully parallel, and the passive weights maximize energy efficiency and bandwidth. The computational output efficiently converges and we achieve very good performance.
This paper introduces two recurrent neural network structures called Simple Gated Unit (SGU) and Deep Simple Gated Unit (DSGU), which are general structures for learning long term dependencies. Compared to traditional Long Short-Term Memory (LSTM) an
In long-term deployments of sensor networks, monitoring the quality of gathered data is a critical issue. Over the time of deployment, sensors are exposed to harsh conditions, causing some of them to fail or to deliver less accurate data. If such a d
Identifying university students weaknesses results in better learning and can function as an early warning system to enable students to improve. However, the satisfaction level of existing systems is not promising. New and dynamic hybrid systems are
Neural networks are one of the disruptive computing concepts of our time. However, they fundamentally differ from classical, algorithmic computing in a number of fundamental aspects. These differences result in equally fundamental, severe and relevan
Recently, FPGA has been increasingly applied to problems such as speech recognition, machine learning, and cloud computation such as the Bing search engine used by Microsoft. This is due to FPGAs great parallel computation capacity as well as low pow