ترغب بنشر مسار تعليمي؟ اضغط هنا

What will eROSITA reveal among X-ray faint isolated neutron stars?

149   0   0.0 ( 0 )
 نشر من قبل Adriana Mancini Pires
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the discovery of the first radio pulsar fifty years ago, the population of neutron stars in our Galaxy has grown to over 2,600. A handful of these sources, exclusively seen in X-rays, show properties that are not observed in normal pulsars. Despite their scarcity, they are key to understanding aspects of the neutron star phenomenology and evolution. The forthcoming all-sky survey of eROSITA will unveil the X-ray faint end of the neutron star population at unprecedented sensitivity; therefore, it has the unique potential to constrain evolutionary models and advance our understanding of the sources that are especially silent in the radio and $gamma$-ray regimes. In this contribution I discuss the expected role of eROSITA, and the challenges it will face, at probing the galactic neutron star population.



قيم البحث

اقرأ أيضاً

X-ray emission from the surface of isolated neutron stars (NSs) has been now observed in a variety of sources. The ubiquitous presence of pulsations clearly indicates that thermal photons either come from a limited area, possibly heated by some exter nal mechanism, or from the entire (cooling) surface but with an inhomogeneous temperature distribution. In a NS the thermal map is shaped by the magnetic field topology, since heat flows in the crust mostly along the magnetic field lines. Self-consistent surface thermal maps can hence be produced by simulating the coupled magnetic and thermal evolution of the star. We compute the evolution of the neutron star crust in three dimensions for different initial configurations of the magnetic field and use the ensuing thermal surface maps to derive the spectrum and the pulse profile as seen by an observer at infinity, accounting for general-relativistic effects. In particular, we compare cases with a high degree of symmetry with inherently 3D ones, obtained by adding a quadrupole to the initial dipolar field. Axially symmetric fields result in rather small pulsed fractions ($lesssim 5%$), while more complex configurations produce higher pulsed fractions, up to $sim25%$. We find that the spectral properties of our axisymmetric model are close to those of the bright isolated NS RX~J1856.5-3754 at an evolutionary time comparable with the inferred dynamical age of the source.
Strongly magnetized isolated neutron stars (NSs) are categorized into two families, according mainly to their magnetic field strength. The one with a higher magnetic field of $10^{14}$ - $10^{15}$ G is called magnetar, characterized with repeated sho rt bursts, and the other is X-ray isolated neutron star (XINS) with $10^{13}$ G. Both magnetars and XINSs show thermal emission in X-rays, but it has been considered that the thermal spectrum of magnetars is reproduced with a two-temperature blackbody (2BB), while that of XINSs shows only a single-temperature blackbody (1BB) and the temperature is lower than that of magnetars. On the basis of the magnetic field and temperature, it is often speculated that XINSs may be old and cooled magnetars. Here we report that all the seven known XINSs show a high-energy component in addition to the 1BB model. Analyzing all the XMM-Newton data of the XINSs with the highest statistics ever achieved, we find that their X-ray spectra are all reproduced with a 2BB model, similar to magnetars. Their emission radii and temperature ratios are also similar to those of magnetars except for two XINSs, which show significantly smaller radii than the others. The remarkable similarity in the X-ray spectra between XINSs and magnetars suggests that their origins of the emission are also the same. The lower temperature in XINSs can be explained if XINSs are older than magnetars. Therefore, these results are the observational indication that supports the standard hypothesis on the classification of highly-magnetized NSs.
Peculiar groups of X-ray emitting isolated neutron stars, which include magnetars, the Magnificent Seven, and central compact objects in supernova remnants, escape detection in standard pulsar surveys. Yet, they constitute a key element in understand ing the neutron star evolution and phenomenology. Their use in population studies in the galactic scale has been hindered by the scarcity of their detection. The all-sky survey of eROSITA on-board the forthcoming Spectrum-RG mission has the unique potential to unveil the X-ray faint part of the population and constrain evolutionary models. To create a forecast for the four-year all-sky survey, we perform Monte Carlo simulations of a population synthesis model, where we follow the evolutionary tracks of thermally emitting neutron stars in the Milky Way and test their detectability. In this work, we discuss strategies for pinpointing the most promising candidates for follow-up observing campaigns using current and future facilities.
444 - R. P. Mignani 2012
G315.4-2.3 is a young Galactic supernova remnant (SNR), whose identification as the remains of a Type-II supernova (SN) explosion has been debated for a long time. In particular, recent multi-wavelength observations suggest that it is the result of a Type Ia SN, based on spectroscopy of the SNR shell and the lack of a compact stellar remnant.However, two X-ray sources, one detected by Einstein and ROSAT (Source V) and the other by Chandra (Source N) have been proposed as possible isolated neutron star candidates. In both cases, no clear optical identification was available and, therefore, we performed an optical and X-ray study to determine the nature of these two sources. Based on Chandra astrometry, Source V is associated with a bright V~14 star, which had been suggested based on the less accurate ROSAT position. Similarly, from VLT archival observations, we found that Source N is associated with a relatively bright star ($V=20.14 $). These likely identifications suggest that both X-ray sources cannot be isolated neutron stars.
AX J1754.2-2754, 1RXS J171824.2-402934 and 1RXH J173523.7-354013 are three persistent neutron star low-mass X-ray binaries that display a 2--10 keV accretion luminosity Lx of only (1-10)x1E34 erg s-1 (i.e., only ~0.005-0.05 % of the Eddington limit). The phenomenology of accreting neutron stars which accrete at such low accretion rates is not yet well known and the reason why they have such low accretion rates is also not clear. Therefore, we have obtained XMM-Newton data of these three sources and here we report our analysis of the high-quality X-ray spectra we have obtained for them. We find that AX J1754.2-2754 has Lx~1E35 erg s-1, while the other two have X-ray luminosities about an order of magnitude lower. However, all sources have a similar, relatively soft, spectrum with a photon index of 2.3-2.5, when the spectrum is fitted with an absorbed power-law model. This model fits the data of AX J1754.2-2754 adequately, but it cannot fit the data obtained for 1RXS J171824.2-402934 and 1RXH J173523.7-354013. For those sources a clear soft thermal component is needed to fit their spectra. This soft component contributes 40% - 50% to the 0.5-10 keV flux of the sources. When including this additional spectral component, the power-law photon indices are significantly lower. It can be excluded that a similar component with similar contributions to the 2-10 keV X-ray flux is present for AX J1754.2-2754, indicating that the soft spectrum of this source is mostly due to the fact that the power-law component itself is not hard. We note that we cannot excluded that weaker soft component is present in the spectrum of this source which only contributes up to ~25% to the 0.5-10 keV X-ray flux. We discuss our results in the context of what is known of accreting neutron stars at very low accretion rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا