ترغب بنشر مسار تعليمي؟ اضغط هنا

Type III Solar Radio Burst Source Region Splitting Due to a Quasi-Separatrix Layer

314   0   0.0 ( 0 )
 نشر من قبل Patrick McCauley
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present low-frequency (80-240 MHz) radio imaging of type III solar radio bursts observed by the Murchison Widefield Array (MWA) on 2015/09/21. The source region for each burst splits from one dominant component at higher frequencies into two increasingly-separated components at lower frequencies. For channels below ~132 MHz, the two components repetitively diverge at high speeds (0.1-0.4 c) along directions tangent to the limb, with each episode lasting just ~2 s. We argue that both effects result from the strong magnetic field connectivity gradient that the burst-driving electron beams move into. Persistence mapping of extreme ultraviolet (EUV) jets observed by the Solar Dynamics Observatory reveals quasi-separatrix layers (QSLs) associated with coronal null points, including separatrix dome, spine, and curtain structures. Electrons are accelerated at the flare site toward an open QSL, where the beams follow diverging field lines to produce the source splitting, with larger separations at larger heights (lower frequencies). The splitting motion within individual frequency bands is interpreted as a projected time-of-flight effect, whereby electrons traveling along the outer field lines take slightly longer to excite emission at adjacent positions. Given this interpretation, we estimate an average beam speed of 0.2 c. We also qualitatively describe the quiescent corona, noting in particular that a disk-center coronal hole transitions from being dark at higher frequencies to bright at lower frequencies, turning over around 120 MHz. These observations are compared to synthetic images based on the Magnetohydrodynamic Algorithm outside a Sphere (MAS) model, which we use to flux-calibrate the burst data.



قيم البحث

اقرأ أيضاً

Quasi-Separatrix Layers (QSLs) are a useful proxy for the locations where current sheets can develop in the solar corona, and give valuable information about the connectivity in complicated magnetic field configurations. However, calculating QSL maps even for 2-dimensional slices through 3-dimensional models of coronal magnetic fields is a non-trivial task as it usually involves tracing out millions of magnetic field lines with immense precision. Thus, extending QSL calculations to three dimensions has rarely been done until now. In order to address this challenge, we present QSL Squasher -- a public, open-source code, which is optimized for calculating QSL maps in both two and three dimensions on GPUs. The code achieves large processing speeds for three reasons, each of which results in an order-of-magnitude speed-up. 1) The code is parallelized using OpenCL. 2) The precision requirements for the QSL calculation are drastically reduced by using perturbation theory. 3) A new boundary detection criterion between quasi-connectivity domains is used, which quickly identifies possible QSL locations which need to be finely sampled by the code. That boundary detection criterion relies on finding the locations of abrupt field-line length changes, which we do by introducing a new Field-line Length Edge (FLEDGE) map. We find FLEDGE maps useful on their own as a quick-and-dirty substitute for QSL maps. QSL Squasher allows constructing high-resolution 3D FLEDGE maps in a matter of minutes, which is two orders of magnitude faster than calculating the corresponding 3D QSL maps. We include a sample of calculations done using QSL Squasher to demonstrate its capabilities as a QSL calculator, as well as to compare QSL and FLEDGE maps.
Context. To investigate the source of a type III radio burst storm during encounter 2 of NASAs Parker Solar Probe (PSP) mission. Aims. It was observed that in encounter 2 of NASAs Parker Solar Probe mission there was a large amount of radio activit y, and in particular a noise storm of frequent, small type III bursts from 31st March to 6th April 2019. Our aim is to investigate the source of these small and frequent bursts. Methods. In order to do this, we analysed data from the Hinode EUV Imaging Spectrometer (EIS), PSP FIELDS, and the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). We studied the behaviour of active region 12737, whose emergence and evolution coincides with the timing of the radio noise storm and determined the possible origins of the electron beams within the active region. To do this, we probe the dynamics, Doppler velocity, non-thermal velocity, FIP bias, densities, and carry out magnetic modelling. Results. We demonstrate that although the active region on the disk produces no significant flares, its evolution indicates it is a source of the electron beams causing the radio storm. They most likely originate from the area at the edge of the active region that shows strong blue-shifted plasma. We demonstrate that as the active region grows and expands, the area of the blue-shifted region at the edge increases, which is also consistent with the increasing area where large-scale or expanding magnetic field lines from our modelling are anchored. This expansion is most significant between 1 and 4 April 2019, coinciding with the onset of the type III storm and the decrease of the individual bursts peak frequency, indicating the height at which the peak radiation is emitted increases as the active region evolves.
We studied a solar flare with pronounced quasi-periodic pulsations detected in the microwave, X-ray, and radio bands. We used the methods of correlation, Fourier, and wavelet analyses to examine the temporal fine structures and relationships between the time profiles in each wave band. We found that the time profiles of the microwaves, hard X-rays and type III radio bursts vary quasi-periodically with the common period of 40-50 s. The average amplitude of the variations is high, above 30% of the background flux level and reaching 80% after the flare maximum. We did not find the periodicity in either the thermal X-ray flux component or source size dynamics. Our findings indicate that the detected periodicity is likely to be associated with periodic dynamics in the injection of non-thermal electrons, that can be produced by periodic modulation of magnetic reconnection.
Type III and type-III-like radio bursts are produced by energetic electron beams guided along coronal magnetic fields. As a variant of type III bursts, Type N bursts appear as the letter N in the radio dynamic spectrum and reveal a magnetic mirror ef fect in coronal loops. Here, we report a well-observed N-shaped burst consisting of three successive branches at metric wavelength with both fundamental and harmonic components and a high brightness temperature ($>$10$^9$ K). We verify the burst as a true type N burst generated by the same electron beam from three aspects of the data. First, durations of the three branches at a given frequency increase gradually, may due to the dispersion of the beam along its path. Second, the flare site, as the only possible source of non-thermal electrons, is near the western feet of large-scale closed loops. Third, the first branch and the following two branches are localized at different legs of the loops with opposite sense of polarization. We also find that the sense of polarization of the radio burst is in contradiction to the O-mode and there exists a fairly large time delay ($sim$3-5 s) between the fundamental and harmonic components. Possible explanations accounting for these observations are presented. Assuming the classical plasma emission mechanism, we can infer coronal parameters such as electron density and magnetic field near the radio source and make diagnostics on the magnetic mirror process.
In order to allow for a comparison with the measurements from other antenna systems, the voltage power spectral density measured by the Radio and Plasma waves receiver (RPW) on board Solar Orbiter needs to be converted into physical quantities that d epend on the intrinsic properties of the radiation itself.The main goal of this study is to perform a calibration of the RPW dipole antenna system that allows for the conversion of the voltage power spectral density measured at the receivers input into the incoming flux density. We used space observations from the Thermal Noise Receiver (TNR) and the High Frequency Receiver (HFR) to perform the calibration of the RPW dipole antenna system. Observations of type III bursts by the Wind spacecraft are used to obtain a reference radio flux density for cross-calibrating the RPW dipole antennas. The analysis of a large sample of HFR observations (over about ten months), carried out jointly with an analysis of TNR-HFR data and prior to the antennas deployment, allowed us to estimate the reference system noise of the TNR-HFR receivers. We obtained the effective length of the RPW dipoles and the reference system noise of TNR-HFR in space, where the antennas and pre-amplifiers are embedded in the solar wind plasma. The obtained $l_{eff}$ values are in agreement with the simulation and measurements performed on the ground. By investigating the radio flux intensities of 35 type III bursts simultaneously observed by Solar Orbiter and Wind, we found that while the scaling of the decay time as a function of the frequency is the same for the Waves and RPW instruments, their median values are higher for the former. This provides the first observational evidence that Type III radio waves still undergo density scattering, even when they propagate from the source, in a medium with a plasma frequency that is well below their own emission frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا