ﻻ يوجد ملخص باللغة العربية
It is shown that quantum entanglement is the only force able to maintain the fourth state of matter, possessing fixed shape at an arbitrary volume. Accordingly, a new relativistic Schrodinger equation is derived and transformed further to the relativistic Bohmian mechanics via the Madelung transformation. Three dissipative models are proposed as extensions of the quantum relativistic Hamilton-Jacobi equation. The corresponding dispersion relations are obtained.
We formulate Bohmian mechanics (BM) such that the main objects of concern are macroscopic phenomena, while microscopic particle trajectories only play an auxiliary role. Such a formulation makes it easy to understand why BM always makes the same meas
Bohmian mechanics (BM) draws a picture of nature, which is completely different from that drawn by standard quantum mechanics (SQM): Particles are at any time at a definite position, and the universe evolves deterministically. Astonishingly, accordin
Perhaps because of the popularity that trajectory-based methodologies have always had in Chemistry and the important role they have played, Bohmian mechanics has been increasingly accepted within this community, particularly in those areas of the the
Bohmian mechanics is a causal interpretation of quantum mechanics in which particles describe trajectories guided by the wave function. The dynamics in the vicinity of nodes of the wave function, usually called vortices, is regular if they are at res
We develop an extension of Bohmian mechanics to a curved background space-time containing a singularity. The present paper focuses on timelike singularities. We use the naked timelike singularity of the super-critical Reissner-Nordstrom geometry as a