ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing for Shock-Heated X-ray Gas Around Compact Steep Spectrum Radio Galaxies

59   0   0.0 ( 0 )
 نشر من قبل Grant Tremblay
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Chandra and XMM-Newton X-ray, VLA radio, and optical observations of three candidate Compact Steep Spectrum (CSS) radio galaxies. CSS sources are galactic scale and are presumably driving a shock through the ISM of their host galaxy. B3 1445+410 is a low excitation emission line CSS radio galaxy with possibly a hybrid Fanaroff-Riley FRI/II (or Fat Double) radio morphology. The Chandra observations reveal a point-like source which is well fit with a power law consistent with emission from a Doppler boosted core. 3C 268.3 is a CSS broad line radio galaxy whose Chandra data are consistent spatially with a point source centered on the nucleus and spectrally with a double power-law model. PKS B1017-325 is a low excitation emission line radio galaxy with a bent double radio morphology. While from our new spectroscopic redshift, PKS B1017-325 falls outside the formal definition of a CSS, the XMNM-Newton observations are consistent with ISM emission with either a contribution from hot shocked gas or non-thermal jet emission. We compile selected radio and X-ray properties of the nine bona fide CSS radio galaxies with X-ray detections so far. We find that 2/9 show X-ray spectroscopic evidence for hot shocked gas. We note that the counts in the sources are low and the properties of the 2 sources with evidence for hot shocked gas are typical of the other CSS radio galaxies. We suggest that hot shocked gas may be typical of CSS radio galaxies due to their propagation through their host galaxies.



قيم البحث

اقرأ أيضاً

Compact steep-spectrum (CSS) and peaked spectrum (PS) radio sources are compact, powerful radio sources. The multi-frequency observational properties and current theories are reviewed with emphasis on developments since the earlier review of ODea (19 98). There are three main hypotheses for the nature of PS and CSS sources. (1) The PS sources might be very young radio galaxies which will evolve into CSS sources on their way to becoming large radio galaxies. (2) The PS and CSS sources might be compact because they are confined (and enhanced in radio power) by interaction with dense gas in their environments. (3) Alternately, the PS sources might be transient or intermittent sources. Each of these hypotheses may apply to individual objects. The relative number in each population will have significant implications for the radio galaxy paradigm. Proper motion studies over long time baselines have helped determine hotspot speeds for over three dozen sources and establish that these are young objects. Multifrequency polarization observations have demonstrated that many CSS/PS sources are embedded in a dense interstellar medium and vigorously interacting with it. The detection of emission line gas aligned with the radio source, and blue-shifted HI absorption and [OIII] emission lines indicates that AGN feedback is present in these objects -- possibly driven by the radio source. CSS/PS sources with evidence of episodic AGN over a large range of time-scales have been discussed. The review closes with a discussion of open questions and prospects for the future.
166 - D. Anish Roshi 2012
A compact steep spectrum radio source (J0535-0452) is located in the sky coincident with a bright optical rim in the HII region NGC1977. J0535-0452 is observed to be $leq 100$ mas in angular size at 8.44 GHz. The spectrum for the radio source is stee p and straight with a spectral index of -1.3 between 330 and 8440 MHz. No 2 mu m IR counter part for the source is detected. These characteristics indicate that the source may be either a rare high redshift radio galaxy or a millisecond pulsar (MSP). Here we investigate whether the steep spectrum source is a millisecond pulsar.The optical rim is believed to be the interface between the HII region and the adjacent molecular cloud. If the compact source is a millisecond pulsar, it would have eluded detection in previous pulsar surveys because of the extreme scattering due to the HII region--molecular cloud interface. The limits obtained on the angular broadening along with the distance to the scattering screen are used to estimate the pulse broadening. The pulse broadening is shown to be less than a few msec at frequencies $gtsim$ 5 GHz. We therefore searched for pulsed emission from J0535-0452 at 14.8 and 4.8 GHz with the Green Bank Telescope (GBT). No pulsed emission is detected to 55 and 30 mu Jy level at 4.8 and 14.8 GHz. Based on the parameter space explored by our pulsar search algorithm, we conclude that, if J0535-0452 is a pulsar, then it could only be a binary MSP of orbital period $ltsim$ 5 hrs.
105 - M. Orienti 2015
Compact steep spectrum (CSS) and GHz-peaked spectrum (GPS) radio sources represent a large fraction of the extragalactic objects in flux density-limited samples. They are compact, powerful radio sources whose synchrotron peak frequency ranges between a few hundred MHz to several GHz. CSS and GPS radio sources are currently interpreted as objects in which the radio emission is in an early evolutionary stage. In this contribution I review the radio properties and the physical characteristics of this class of radio sources, and the interplay between their radio emission and the ambient medium of the host galaxy.
We report first X-ray Chandra observations of a sample of seven low luminosity compact (LLC) sources. They belong to a class of young compact steep spectrum (CSS) radio sources. Four of them have been detected, the other three have upper limit estima tions for X-ray flux, one CSS galaxy is associated with an X-ray cluster. We have used the new observations together with the observational data for known strong CSS and gigahertz-peaked spectrum (GPS) objects and large scale FRIs and FRIIs to study the relation between morphology, X-ray properties and excitation modes in radio-loud AGNs. We found that: (1) The low power objects fit well to the already established X-ray - radio luminosity correlation for AGNs and occupy the space among, weaker in the X-rays, FRI objects. (2) The high excitation galaxies (HEG) and low excitation galaxies (LEG) occupy distinct locus in the radio/X-ray luminosity plane, notwithstanding their evolutionary stage. This is in agreement with the postulated different origin of the X-ray emission in these two group of objects. (3) We have tested the AGN evolution models by comparing the radio/X-ray luminosity ratio with the size of the sources, and indirectly, with their age. We conclude that the division for two different X-ray emission modes, namely originate in the base of the relativistic jet (FRIs) or in the accretion disk (FRIIs) is already present among the younger compact AGNs. (4) Finally, we found that the CSS sources are less obscured than the more compact GPSs in X-rays. However, the anti-correlation between X-ray column density and radio size does not hold for the whole sample of GPS and CSS objects.
144 - J. Holt 2008
I will review some of the developments in studies of the host galaxy properties of Compact Steep Spectrum (CSS) and GigaHertz-Peaked Spectrum (GPS) radio sources. In contrast to previous reviews structured around observational technique, I will discu ss the host galaxy properties in terms of morphology, stellar content and warm gas properties and discuss how compact, young radio-loud AGN are key objects for understanding galaxy evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا