ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Control of Storage Regeneration with Repair Codes

103   0   0.0 ( 0 )
 نشر من قبل Francesco De Pellegrini Dr.
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

High availability of containerized applications requires to perform robust storage of applications state. Since basic replication techniques are extremely costly at scale, storage space requirements can be reduced by means of erasure or repairing codes. In this paper we address storage regeneration using repair codes, a robust distributed storage technique with no need to fully restore the whole state in case of failure. In fact, only the lost servers content is replaced. To do so, new cleanslate storage units are made operational at a cost for activating new storage servers and a cost for the transfer of repair data. Our goal is to guarantee maximal availability of containers state files by a given deadline. activation of servers and communication cost. Upon a fault occurring at a subset of the storage servers, we aim at ensuring that they are repaired by a given deadline. We introduce a controlled fluid model and derive the optimal activation policy to replace servers under such correlated faults. The solution concept is the optimal control of regeneration via the Pontryagin minimum principle. We characterise feasibility conditions and we prove that the optimal policy is of threshold type. Numerical results describe how to apply the model for system dimensioning and show the tradeoff between



قيم البحث

اقرأ أيضاً

Partial MDS (PMDS) and sector-disk (SD) codes are classes of erasure correcting codes that combine locality with strong erasure correction capabilities. We construct PMDS and SD codes with local regeneration where each local code is a bandwidth-optim al regenerating MDS code. In the event of a node failure, these codes reduce both, the number of servers that have to be contacted as well as the amount of network traffic required for the repair process. The constructions require significantly smaller field size than the only other construction known in literature. Further, we present a construction of PMDS codes with global regeneration which allow to efficiently repair patterns of node failures that exceed the local erasure correction capability of the code and thereby invoke repair across different local groups.
Partial MDS (PMDS) and sector-disk (SD) codes are classes of erasure codes that combine locality with strong erasure correction capabilities. We construct PMDS and SD codes where each local code is a bandwidth-optimal regenerating MDS code. The const ructions require significantly smaller field size than the only other construction known in literature.
The problem of exact-repair regenerating codes against eavesdropping attack is studied. The eavesdropping model we consider is that the eavesdropper has the capability to observe the data involved in the repair of a subset of $ell$ nodes. An $(n,k,d, ell)$ secure exact-repair regenerating code is an $(n,k,d)$ exact-repair regenerating code that is secure under this eavesdropping model. It has been shown that for some parameters $(n,k,d,ell)$, the associated optimal storage-bandwidth tradeoff curve, which has one corner point, can be determined. The focus of this paper is on characterizing such parameters. We establish a lower bound $hat{ell}$ on the number of wiretap nodes, and show that this bound is tight for the case $k = d = n-1$.
Recently, the research on local repair codes is mainly confined to repair the failed nodes within each repair group. But if the extreme cases occur that the entire repair group has failed, the local code stored in the failed group need to be recovere d as a whole. In this paper, local codes with cooperative repair, in which the local codes are constructed based on minimum storage regeneration (MSR) codes, is proposed to achieve repairing the failed groups. Specifically, the proposed local codes with cooperative repair construct a kind of mutual interleaving structure among the parity symbols, that the parity symbols of each local code, named as distributed local parity, can be generated by the parity symbols of the MSR codes in its two adjacent local codes. Taking advantage of the structure given, the failed local groups can be repaired cooperatively by their adjacent local groups with lower repair locality, and meanwhile the minimum distance of local codes with cooperative repair is derived. Theoretical analysis and simulation experiments show that, compared with codes with local regeneration (such as MSR-local codes and MBR-local codes), the proposed local codes with cooperative repair have benefits in bandwidth overhead and repair locality for the case of local groups failure.
Erasure-correcting codes, that support local repair of codeword symbols, have attracted substantial attention recently for their application in distributed storage systems. This paper investigates a generalization of the usual locally repairable code s. In particular, this paper studies a class of codes with the following property: any small set of codeword symbols can be reconstructed (repaired) from a small number of other symbols. This is referred to as cooperative local repair. The main contribution of this paper is bounds on the trade-off of the minimum distance and the dimension of such codes, as well as explicit constructions of families of codes that enable cooperative local repair. Some other results regarding cooperative local repair are also presented, including an analysis for the well-known Hadamard/Simplex codes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا