ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous popularity growth in social tagging ecosystems

101   0   0.0 ( 0 )
 نشر من قبل Yasuhiro Hashimoto
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

In social tagging systems, the diversity of tag vocabulary and the popularity of such tags continue to increase as they are exposed to selection pressure derived from our cognitive nature and cultural preferences. This is analogous to living ecosystems, where mutation and selection play a dominant role. Such population dynamism, which yields a scaling law, is mathematically modeled by a simple stochastic process---the Yule--Simon process, which describes how new words are introduced to the system and then grow. However, in actual web services, we have observed that a large fluctuation emerges in the popularity growth of individual tags that cannot be explained by the ordinary selection mechanism. We introduce a scaling factor to quantify the degree of the deviation in the popularity growth from the mean-field solution of the Yule--Simon process, and we discuss possible triggers of such anomalous popularity behavior.



قيم البحث

اقرأ أيضاً

Heavy-tailed distributions of meme popularity occur naturally in a model of meme diffusion on social networks. Competition between multiple memes for the limited resource of user attention is identified as the mechanism that poises the system at crit icality. The popularity growth of each meme is described by a critical branching process, and asymptotic analysis predicts power-law distributions of popularity with very heavy tails (exponent $alpha<2$, unlike preferential-attachment models), similar to those seen in empirical data.
Social structures influence a variety of human behaviors including mobility patterns, but the extent to which one individuals movements can predict anothers remains an open question. Further, latent information about an individuals mobility can be pr esent in the mobility patterns of both social and non-social ties, a distinction that has not yet been addressed. Here we develop a colocation network to distinguish the mobility patterns of an egos social ties from those of non-social colocators, individuals not socially connected to the ego but who nevertheless arrive at a location at the same time as the ego. We apply entropy and predictability measures to analyse and bound the predictive information of an individuals mobility pattern and the flow of that information from their top social ties and from their non-social colocators. While social ties generically provide more information than non-social colocators, we find that significant information is present in the aggregation of non-social colocators: 3-7 colocators can provide as much predictive information as the top social tie, and colocators can replace up to 85% of the predictive information about an ego, compared with social ties that can replace up to 94% of the egos predictability. The presence of predictive information among non-social colocators raises privacy concerns: given the increasing availability of real-time mobility traces from smartphones, individuals sharing data may be providing actionable information not just about their own movements but the movements of others whose data are absent, both known and unknown individuals.
Social network is a main tunnel of rumor spreading. Previous studies are concentrated on a static rumor spreading. The content of the rumor is invariable during the whole spreading process. Indeed, the rumor evolves constantly in its spreading proces s, which grows shorter, more concise, more easily grasped and told. In an early psychological experiment, researchers found about 70% of details in a rumor were lost in the first 6 mouth-to-mouth transmissions cite{TPR}. Based on the facts, we investigate rumor spreading on social networks, where the content of the rumor is modified by the individuals with a certain probability. In the scenario, they have two choices, to forward or to modify. As a forwarder, an individual disseminates the rumor directly to its neighbors. As a modifier, conversely, an individual revises the rumor before spreading it out. When the rumor spreads on the social networks, for instance, scale-free networks and small-world networks, the majority of individuals actually are infected by the multi-revised version of the rumor, if the modifiers dominate the networks. Our observation indicates that the original rumor may lose its influence in the spreading process. Similarly, a true information may turn to be a rumor as well. Our result suggests the rumor evolution should not be a negligible question, which may provide a better understanding of the generation and destruction of a rumor.
An increasing number of todays social interactions occurs using online social media as communication channels. Some online social networks have become extremely popular in the last decade. They differ among themselves in the character of the service they provide to online users. For instance, Facebook can be seen mainly as a platform for keeping in touch with close friends and relatives, Twitter is used to propagate and receive news, LinkedIn facilitates the maintenance of professional contacts, Flickr gathers amateurs and professionals of photography, etc. Albeit different, all these online platforms share an ingredient that pervades all their applications. There exists an underlying social network that allows their users to keep in touch with each other and helps to engage them in common activities or interactions leading to a better fulfillment of the services purposes. This is the reason why these platforms share a good number of functionalities, e.g., personal communication channels, broadcasted status updates, easy one-step information sharing, news feeds exposing broadcasted content, etc. As a result, online social networks are an interesting field to study an online social behavior that seems to be generic among the different online services. Since at the bottom of these services lays a network of declared relations and the basic interactions in these platforms tend to be pairwise, a natural methodology for studying these systems is provided by network science. In this chapter we describe some of the results of research studies on the structure, dynamics and social activity in online social networks. We present them in the interdisciplinary context of network science, sociological studies and computer science.
With the availability of cell phones, internet, social media etc. the interconnectedness of people within most societies has increased drastically over the past three decades. Across the same timespan, we are observing the phenomenon of increasing le vels of fragmentation in society into relatively small and isolated groups that have been termed filter bubbles, or echo chambers. These pose a number of threats to open societies, in particular, a radicalisation in political, social or cultural issues, and a limited access to facts. In this paper we show that these two phenomena might be tightly related. We study a simple stochastic co-evolutionary model of a society of interacting people. People are not only able to update their opinions within their social context, but can also update their social links from collaborative to hostile, and vice versa. The latter is implemented such that social balance is realised. We find that there exists a critical level of interconnectedness, above which society fragments into small sub-communities that are positively linked within and hostile towards other groups. We argue that the existence of a critical communication density is a universal phenomenon in all societies that exhibit social balance. The necessity arises from the underlying mathematical structure of a phase transition phenomenon that is known from the theory of a kind of disordered magnets called spin glasses. We discuss the consequences of this phase transition for social fragmentation in society.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا