ﻻ يوجد ملخص باللغة العربية
It has been proposed that an additional U(1) sector of hidden photons could account for the Dark Matter observed in the Universe. When passing through an interface of materials with different dielectric properties, hidden photons can give rise to photons whose wavelengths are related to the mass of the hidden photons. In this contribution we report on measurements covering the visible and near-UV spectrum that were done with a large, 14 m2 spherical metallic mirror and discuss future dark-matter searches in the eV and sub-eV range by application of different electromagnetic radiation detectors.
Many extensions of the Standard Model of particle physics predict a parallel sector of a new U(1) symmetry, giving rise to hidden photons. These hidden photons are candidate particles for cold dark matter. They are expected to kinetically mix with re
The DAMIC (Dark Matter in CCDs) experiment searches for the interactions of dark matter particles with the nuclei and the electrons in the silicon bulk of thick fully depleted charge-coupled devices (CCDs). Because of the low noise and low dark curre
We search for hidden-photon cold dark matter (HP-CDM) using a spectroscopic system in a K-band frequency range. Our system comprises a planar metal plate and cryogenic receiver. This is the first time a cryogenic receiver has been used in the search
Identifying the nature and origin of dark matter is one of the major challenges for modern astro and particle physics. Direct dark-matter searches aim at an observation of dark-matter particles interacting within detectors. The focus of several such
NEWAGE is a direction-sensitive dark matter search using a low-pressure gaseous time projection chamber. A low alpha-ray emission rate micro pixel chamber had been developed in order to reduce background for dark matter search. We conducted the dark